
185

Acta Pharm. 71 (2021) 185–213 Review 
https://doi.org/10.2478/acph-2021-0015

Piperine: Chemical, biological and nanotechnological 
applications

Piperine (PIP) is an alkaloid present in several species of 
piper, mainly Piper nigrum Linn. and P. longum, among 
other species. The present article provides a comprehensive 
review of PIP research in the last years concerning its 
chemical properties, synthesis, absorption, metabolism, 
bioavailability and toxicity. The reviewed PIP literature has 
shown many pharmacological properties, such as antidia-
betic, antidiarrheal, antioxidant, antibacterial, and anti-
parasitic activity of PIP. However, its low solubility and 
absorption make its application challenging. This review 
also includes advances in the development of nanosystems 
containing PIP, including liposomes, micelles, metal 
nanoparticles, nanofibers, polymeric nanoparticles, and 
solid-lipid nanoparticles. Finally, we discuss different in 
vitro and in vivo studies to evaluate the biological activity of 
this drug, as well as some methods for the synthesis of 
nanosystems and their physical characteristics. 

Keywords: absorption, metabolism, pharmacological activity, 
nanosystems

INTRODUCTION

Piperine (1-piperoylpiperidine), by its IUPAC name (2E,4E)-5-(1,3-benzodioxol-5-yl)-
1-piperidin-1-ylpenta-2,4-dien-1-one, is found in various piper species, such as black pep-
per (Piper nigrum Linn.) (97.25 to 98.57 %), long pepper (P. longum) (96.50 to 97.50 %), P. ret-
rofractum (0.03 %), P. crussi and P. geniculatum (1). It can also be found in the leaves of 
Rhododendron faurie (Ericaceae) (2), dry rhizomes of Zingiber officinale (ginger) (3), Vicoa In-
dica (Asteraceae), Fructus piperis longi (4), the bark of Careya arborea (Lecythidaceae) (5) and 
the seeds of Anethum sowa (Apiaceae) (6). This alkaloid is weakly basic with the molecular 
formula C17H19NO3, Mr 285.34 (Fig. 1). It is slightly soluble in water (0.04 g L–1 at 18 °C) and 
highly soluble in ether (0.027 g mL–1), chloroform (0.58 g mL–1) and ethanol (0.06 g mL–1). 
Its melting range is from 128 to 130 °C. PIP was first isolated by Hans Christian Oersted in 
1819 from black pepper (P. nigrum), in addition to its isomeric alkaloids such as isochavi-
cine (trans-cis isomers), chavicine (cis-cis isomers) and isopiperine (cis-trans isomers) (Fig. 2) 
(7, 132). Despite its wide biological potential, such as modulating the bioavailability of 
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drugs, antimutagenic action, antitumor effects, antioxidant and anti-inflammatory effects, 
the lipophilic character of PIP makes it difficult to dissolve, limiting its access to the site of 
action and its bioavailability in the body.

A lot of research in the field of pharmaceutical technology has been focused on opti-
mizing the dissolution of drugs and bioactive molecules with lipophilic properties. Among 
the developed strategies, the nano-delivery of such molecules has been used to increase 
their solubilization, as well as to promote their controlled release (8).

The objective of this review is to provide information on the synthesis, absorption, 
metabolism, bioavailability and toxicity of PIP, and to analyze various pharmacological 
activities and nanosystems containing PIP, which improve its bioavailability and pharma-
cological effects.

SYNTHESIS OF PIPERINE

PIP synthesis starts with the biosynthesis of L-lysine (Fig. 3). In the presence of pyri-
doxal phosphate (PLP), L-lysine is subjected to decarboxylation into cadaverine, and then 
the oxidative enzyme diamine oxidase causes its deamination into an amino aldehyde. 
This amine undergoes a cyclization forming the imine, Δ1-piperideine, which is reduced 
to piperidine and reacts with the piperonyl-CoA (piperic acid-coenzyme A ester) to finally 
form PIP (6).

Fig. 1. Chemical structure of piperine. Three sub-units: butadiene chain (sub-unit in black), an amide 
function formed by piperidine and α,β-unsaturated carbonyl (subunit in red), a piperonal nucleus 
(sub-unit in blue).

Fig. 2. Alkaloids obtained from black pepper (P. nigrum L.): chavicine, isopiperine and isochavicine 
(7, 132).
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ABSORPTION AND METABOLISM

Despite the current use of PIP, there is little information about its metabolism and 
absorption. However, a study undertaken in 1986 by Bhat et al. (9) analyzed the absorption 
of PIP in male albino mice at a dose of 15 mg (85 mg kg–1) administered intraperitoneally 
or 30 mg (170 mg kg–1) by the oral route. The results showed that the intraperitoneal admi-
ni stration of PIP was detected in the liver at a concentration of 1–2.5 % and 15 % was found 
in the spleen, kidney and serum, in contrast to the oral administration, which yielded only 
0.1–0.25 % in the same organs. Suresh et al. (10) administered PIP orally in rats (170 mg kg–1) 
and found that the maximum level of PIP reached after 6 h in the intestine was 8 % of the 
total amount of PIP administered. Also, Liu et al. (11) detected PIP concentration in differ-
ent tissues of the rat (100 mg kg–1), such as liver, heart, spleen, lungs and kidneys, the highest 
concentration being 50 % in the liver.

Several types of metabolites similar to PIP have been found in human urine. These 
contained the methoxy group (OCH3) instead of the hydroxyl group (OH) as a substituent 

Fig. 3. Schematic representation of PIP biosynthesis from L-lysine (6).

Fig. 4. Piperine and similar metabolites in human urine (4,5-dihydroxypiperine) (12).
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in the 3-position in the benzene ring (Fig. 4). Some examples are valeric acid piperidide 
[5-(3,4-dihydroxyphenyl)], valeric acid pipididine [5-(3,4-dihydroxyphenyl)] and 
[5-(3,4-dihydroxyphenyl)-2,4-pentadienoic acid] piperidine (Fig. 5). This study also showed 
that PIP can be converted to peptic acid by amidase and then metabolized by oxidation as 

Fig. 5. Structure of piperine and metabolites identified in human and rat urine (12).

Fig. 6. Metabolic pathways of piperine identified after in vivo experiments with rats (133).
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piperonyl alcohol, piperonal, vanillic acid and piperonyl acid. Also, it was observed that 
piperic acid is excreted by bile, along with vanillic acid (4.3 %), piperonal acid (1.3 %) and 
piperonyl alcohol (3.6 %) (12). Other studies carried out by Shang et al. (13) identified a total 
of 148 metabolites of PIP of different structures during a study in mice, and they showed 
that PIP was mainly subjected to dehydrogenation, hydrogenation, methylation, glucuronic 
conjugation, ring cleavage, demethylation, hydroxylation, methoxylation, sulfate conjugation, 
oxidation, glucuronidation, and their complex metabolic reactions (Fig. 6).

BIOENHANCER

The oral administration of drugs is subjected to a variety of adverse conditions, such as 
gastrointestinal content, the action of intestinal wall enzymes, the action of the microflora, 
and, mainly, enzymatic action in the liver. The first-pass metabolism can be a desired step 
for prodrug activation, but in other drugs, it may promote bioavailability reduction and 
rapid excretion, thus preventing the therapeutic effect. PIP has been widely reported in 
the literature for its ability to increase the effect and bioavailability of orally administered 
drugs, and different mechanisms are involved in promoting these effects. This alkaloid may 
 increase the permeability of the cell membrane by interfering with the lipid environment and 
consequently increasing drug absorption. Another well-known mechanism of PIP is enzy-
matic inhibition (14). In general, PIP can inhibit enzymes involved in the biotransformation 
of drugs, preventing its inactivation. Such enzymes include cytochrome nicotinamide ade-
nine dinucleotide phosphate (NADPH) (15), cytochrome B5, uridine diphosphate glucose 
dehydrogenase (UDP-GDH) (16), aryl hydrocarbon hydroxylase (AAH), ethylmorphine-N- 
-demethylase, 7-ethoxycoumarin-O-deethylase, UDP-glucuronyl transferase (17), 5-lipoxy-
genase (18), cyclooxygenase-1 and cytochrome P450 (17). The inhibition of these enzymes 
results in better bioavailability of drugs and nutrients such as fatty acids, β-carotene, resve-
ratrol, norfloxacin, ampicillin, metronidazole, ampicillin, aflatoxin B1, and some vaccines 
(19), phenytoin, pentobarbitone, propranolol/theophylline, curcumin, coenzyme Q10, rifam-
picin, oxytetracycline, losartan potassium, ibuprofen, atenolol, gatifloxacin, ampicillin tri-
hydrate, metronidazole and sparteine. Another mechanism is the inhibition of flux transport 
mediated by glycoprotein P (P-gp), such as digoxin and cyclosporin A; this effect was ob-
served in Caco-2 cell line (human colon carcinoma cell line). The inhibition consists of 
 increased intestinal glycoprotein, which reduces the hepatic P-gp and the P-gp of the kidney 
and causes an increase in the sub-cytotoxic concentration of the drugs through the cell 
membranes (20). Other effects have been described in the literature, such as binding to the 
DNA receptor (21), modulation of cell signal transduction, and inhibition of the medication 
output pump, allowing longer circulation time of the active drug (22).

TOXICITY

Consecutive oral administration of PIP in Swiss albino mice (2.25–4.5 mg kg–1) for five 
days caused a decrease in the myogenic response of B lymphocytes and an increase in neu-
trophils, resulting in a reduction in leukocytes. However, at a lower dose of 1.12 mg kg–1, PIP 
is considered immunologically safe (23). 
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BIOLOGICAL PROPERTIES OF PIPERINE

PIP has a wide variety of biological properties, which have been studied both in vivo 
and in vitro. Due to its chemical structure (Fig. 1), PIP contains three subunits: (i) a butadi-
ene chain, (ii) an amide function formed by piperidine and an α,β-unsaturated carbonyl, 
(iii) a piperonal nucleus. These subunits are responsible for several bioactivities (24). A 
brief presentation of the data gathered in the last years is shown in Table I.

Antibacterial properties

Prokaryotic cells can inhibit the clinical efficacy of antibiotics. These cells have a tool 
called the efflux pump, carried out by membrane proteins. This mechanism helps to elimi-
nate toxins inside the cell and protect it from hostile environments, thus contributing to 
the resistance to multi-drugs. Pharmaceutical companies are currently searching for com-
binations of antimicrobial drugs and PIP because this alkaloid can inhibit the efflux pump 
(25, 26). For example, Helicobacter pylori can induce serious gastric upset and PIP has the 
ideal characteristics of a chemopreventive agent against this bacterium. A study by Toyoda 
et al. (27) showed that PIP inhibits the in vitro proliferation of H. pylori. Also, in vivo studies 
(gerbils infected with H. pylori) showed that PIP suppressed the infiltration of neutrophils 
and mononuclear cells and the expression of tumor necrosis factor (TNF-α phospho-
IκB-α), interleukin (Il-1β), interferons (IFN-γ), Il-6 and inducible nitric oxide synthase 
(iNOS). In conclusion, PIP may have potential use in the chemoprevention of gastric carcino-
genesis associated with H. pylori.

Anticancer and antimutagenic properties

It has been reported that PIP has anticancer and antimutagenic activities of various 
types of cancer cells. (i) It can cause apoptosis in cancer cells which is usually executed 
through two major pathways: death receptor-mediated extrinsic pathway and mitochon-
dria-mediated intrinsic pathway (28). Also, at the molecular level, it can influence many 
proteins in the apoptotic process, suppressing the development of metastasis and tumor 
(29). (ii) It can alter the redox homeostasis, thus slowing down the development of cancer. 
It is known that the final reactive forms produced by the metabolic activation of pro-carci-
nogens, free radicals, and reactive oxygen species (ROS) play a critical role in the develop-
ment of cancer (30). Therefore, PIP can influence cellular physiology in redox changes, 
causing cell death. (iii) It can cause the arrest of cell cycle regulation, decreasing funda-
mental protein regulators such as cyclins, cyclin-dependent kinases (CDK), CDK inhibi-
tors (CDKi), matrix metalloproteinase 9 (MMP-9), nuclear factor k-light-chain-enhancer of 
activated B cells (NF-KB), caspases, cAMP response element-binding (CREB), activated 
transcription factor 2 (ATF-2) (Fig. 7) (31). (iv) It can inhibit angiogenesis (the formation of 
a new blood vasculature) (32). (v) It was able to inhibit the activity of glycoprotein P (also 
known as MDR1 or ABCB1), a protein known to cause the resistance to chemotherapeutic 
agents, due to the effusion pump that depends on adenosine triphosphate (ATP) (33). Also, 
PIP can restrain cancer by modulating multiple signaling pathways, resulting in the inhi-
bition of chemoprevention, antimetastatic, differentiation, autophagy and apoptosis (2). A 
recent study by Han et al. (34) investigated cervical cancer cells and analyzed the co-treat-
ment between PIP and MitoMycin-c (MMc). They demonstrated growth inhibitory effects 
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on cancer cells, showing a dose-dependent sup-
pression of cell proliferation, transducer sig-
nals (phosphorylation) and transcriptional acti-
vators (p-STAT3). It also induced apoptosis in 
the inhibition of Bcl-2.

Antidiabetic properties

Concerning the biological potential of PIP, 
studies have also begun to analyze its mecha-
nism of action in various biological targets. 
Park et al. (35) observed that PIP showed anti-
adipogenesis activity through the activation of 
peroxisome proliferator-activated receptors 
(PPAR-g), which is also linked to insulin sensi-
tization. Considering these points, Kharbanda 
et al. (36) evaluated and determined the antidia-
betic potential of these benzothiazoles using 
the glucose tolerance test followed by the evalu-
ation of the active derivatives in the diabetic 
model induced by streptozotocin (45 mg kg–1 in 
healthy male Wistar mice). It was observed that 
these PIP derivatives showed a significantly 
higher antidiabetic activity than rosiglitazone 
(standard drug). They also showed fewer side-
effects on body mass, lipid peroxidation and 
hepatotoxicity.

Antidiarrheal properties

Miyako et al. (37) demonstrated that PIP 
reduced intestinal mobility in guinea-pig ile-
um, causing fewer diarrheal events. Different 
mechanisms of action were identified in the 
literature, involving capsaicin-sensitive neu-
rons (38) or the vanilloid receptor (39). Consid-
ering the ambiguous mechanisms reported in 
the literature, Taqvi et al. (40) decided to inves-
tigate in more detail the mechanism involved 
in the antispasmodic and antidiarrheal proper-
ties of PIP. This alkaloid showed antidiarrheal 
and antispasmodic activities, mediated by the 
blockage of calcium channels, due to sustained 
contractions induced by high K+ (80 mmol). PIP 
inhibited such contractions with an EC50 value 
of 80.86 μmol, which suggested a blocking effect 
of calcium channels.Bi
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Antihypertensive properties

Antihypertensive drugs are substances that help reduce blood pressure. Their mecha-
nism of action depends on the treatment – diuretics, ß-adrenergic blockers, calcium channel 
blockers, angiotensin-converting enzyme blockers, angiotensin receptor blockers and 
 central adrenergic inhibitors (41). Booranasubkajorna et al. (42) analyzed the antihyperten-
sive effects of PIP in rats with endothelial dysfunction induced by Nω-nitro-L-arginine 
methyl ester hydrochloride. The purpose of this study was to investigate the pharmaco-
kinetics, mechanism of action, hemodynamic and vasoactive effects, and toxicity of PIP in 
rats with spontaneous hypertension (SHR) and normal Wistar rats (NWR). They showed 
that PIP did not affect blood pressure and heart rate in SHR and NWR. However, PIP in-
creased the vasorelaxation induced by acetylcholine of the thoracic aorta and had a vasculo-
protective effect in rats with the deterioration of nitric oxide. Also, they found no liver or 
kidney toxicities. They concluded that although PIP did not affect blood pressure in SHR 
and NWR, it was able to relax the isolated thoracic aorta, showing the potential of a vasculo-
protective effect in hypertensive conditions.

Antiinflammatory properties

The inflammatory process occurs for different reasons, in response to infection by micro-
organisms (bacteria, viruses, or fungi), tissue damage, carcinogenesis, tumor growth, or 
 ischemia (43, 44). The innate and adaptive immune systems are involved in the inflammatory 
process, and the complexity of mediators is involved in the inflammatory response (43–45). 
This process proves beneficial to the body, but in some cases, it is deleterious and presents 
uncomfortable symptoms to patients (44). The medicinal use of plants is widespread in a large 

Fig. 7. The schematic diagram of the molecular machinery and possible targets for the antineoplastic 
properties of piperine. ATF-2 – activated transcription factor 2, CREB – cAMP response element-
binding, MMP-9 – matrix metalloproteinase 9, NF-κB – nuclear factor κ-light-chain-enhancer of acti-
vated B cells, PKC – protein kinase C.
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number of cultures, and ethnomedicine is responsible for investigating their efficacy and 
safety. There are currently several investigations on the anti-inflammatory effects of natural 
products with PIP being one of the biomolecules investigated for this purpose (43).

The inflammation induced by radiotherapy and the production of reactive oxygen 
species (ROS) cause adverse effects during the treatment of cancer. Elkady et al. (46) applied 
γ-ray radiation therapy and the administration of PIP in lung tissue. They showed that PIP 
acted as a potent free radical scavenger, showing a decrease in the activities of pulmonary 
catalase, glutathione peroxidase, tumor necrosis factor in serum-α, interleukin-1β and 
inter leukin-6 levels, compared to an irradiated control group. Besides, there were minimal 
injuries with or without a few degenerative changes.

Inflammatory disorders are caused by enzymes such as cyclooxygenase types 1 and 
2 (COX-1 and COX-2), lipooxygenase, prostaglandin receptor (DP1) and prostaglandin D2 
receptor (2CRTH2). Zakerali et al. (47) selected different spices commonly used in the food 
industry to observe their ability to inhibit the enzymes that cause inflammatory processes. 
PIP demonstrated an inhibitory effect of COX-2 and a better affinity value (–7.8 kcal mol–1) 
and energy binding (–85.08 kcal mol–1) than aspirin and celecoxib. In summary, they sug-
gest incorporating this alkaloid into the daily diet, as it is a potent anti-inflammatory and 
anticancer agent.

Antioxidant properties

Antioxidant compounds are those capable of preventing the oxidation of other com-
pounds (48). Oxidative stress is defined as an imbalance between oxidative and antioxi-
dant compounds, promoting molecular damage (49) and leading to pathological and aging 
processes. Several studies were conducted in search of new molecules with antioxidant 
power for therapeutic and aesthetic purposes. Among the natural antioxidants, flavonoids 
have been the subject of studies due to their ability to sequester reactive oxygen species 
and their high natural availability (48). In this sense, it is of interest to evaluate the anti-
oxidant potential of PIP.

Vijayakumar et al. (50) analyzed tissue lipid peroxidation using PIP as an enzymatic 
and non-enzymatic antioxidant in male Wistar mice, fed a high-fat diet for 10 weeks. They 
concluded that PIP can reduce the oxidative stress induced by the high-fat diet in the cells, 
showing that it reduced the levels of thiobarbituric acid reactive substances (TBARS), con-
jugated dienes and glutathione, besides maintaining the levels of catalase, glutathione-S- 
-transferase, superoxide dismutase and glutathione peroxidase.

Antiparasitic properties

Parasitic diseases affect people all over the world and cause high morbidity and mor-
tality. Antiparasitic agents are drugs used to treat diseases such as malaria, trichomonia-
sis, and leishmaniasis. These are caused by protozoa, flat and roundworms, as well as 
ecto parasites such as ticks, fleas, lice and mites. The ideal antiparasitic drugs must have a 
broad spectrum of action in all stages of parasite development and must be safe (non-
toxic) and low cost (51). These characteristics make PIP a promising candidate for some 
parasitic diseases. For example, its antiparasitic activity is determined by its capacity to 
produce nitric oxide (NO), resulting in various activities such as immunomodulatory 
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 effects and cell cycle detection (epimastigote forms of Trypanosoma cruzi), and affecting the 
mitochondria of the parasites at the biochemical and intracellular levels (52). Previous 
studies have shown that capsaicin has anti-leishmaniasis activity, but it has undesirable 
side-effects on the body. Therefore, a study by Vieira-Araujo et al. (53) combined PIP with 
capsaicin to improve the activity against Leishmaniasis infantum in both the promastigote 
and the amastigote. They showed a better activity with the half-maximal effective concen-
tration (EC50) of 4.31 ± 0.44 and 7.25 ± 4.84 μg mL–1, resp., and demonstrated that PIP im-
proved the pharmacological action of capsaicin against leishmaniasis.

Kumar et al. (54) aimed to evaluate the antiparasitic effect of PIP against Argulus spp. 
– one of the main concerns in aquaculture – in Carassius auratus. They obtained a median 
lethal concentration after 96 h for 52.64 mg L–1 of PIP. Besides, the in vitro effect led to a 100 % 
mortality of Argulus with a concentration of 9.0 mg L–1 after 3 h, while, in an in vivo test, the 
antiparasitic efficacy of 100 % of the PIP solution was found with 9.0 mg L–1 after 48 h. The 
concentration of 9.0 mg L–1 can be used as a potential natural agent to control the Argulus 
parasite.

Spermatogenic properties

The infertility of the human population is caused by various chemical, hormonal, and 
immunological agents. Currently, some secondary metabolites extracted from plants have 
been examined to increase fertility in men (55–60). Therefore, PIP has been shown to inter-
act with the androgen receptor and androgen binding protein. Based on this knowledge, 
Chinta et al. (61) evaluated the fertility effect of PIP in male albino rats after a 60-day treat-
ment. They showed that this alkaloid increases the epididymal sperm count, such as motility 
and viability. They also found a decrease in the levels of epididymal acid and antioxidant 
enzymes (superoxide dismutase and catalase). The results of this study concluded that PIP 
can be used to increase fertility.

Hepatoprotective properties

Due to the biological importance of liver, research is being conducted to identify ways 
of reducing hepatotoxicity, whether caused by pathological processes or by extrinsic toxicity. 
The use of phytochemicals by traditional medicines has also been the object of investi-
gation in ethnomedicine, which yielded potential hepatoprotective findings in different 
species (62). Given the antioxidant potential of PIP, researchers have explored this prop-
erty as a possible hepatoprotective agent. Rather et al. (63) combined leave extract of Aegle 
marmelos with PIP to improve this effect. They showed that the treatment with A. marmelos 
reduced the severity of the toxicity in a dose-dependent manner, after administration in 
mice with carbon tetrachloride (CCl4). However, the low dose of A. marmelos extract (25 mg 
kg–1) did not significantly reverse the hepatotoxicity, but the low dose of A. marmelos in 
combination with PIP showed a significant reversal of hepatotoxicity. They concluded that 
PIP improves the hepaprotective treatment of A. marmelos through its antioxidant and 
anti-inflammatory properties.

Sabina et al. (64) evaluated the potential hepatoprotective property of PIP in mice with 
acetaminophen-induced hepatotoxicity. They also analyzed hepatic marker enzymes and 
inflammatory mediators and determined the antioxidant and pre-oxidation status. After 
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PIP administration, acetaminophen-exposed mice showed a reduction in liver marker 
 enzyme activity and levels of lipid peroxidation, as well as an increase in antioxidant 
 status, suggesting that PIP has a higher potential hepatoprotective property than silymarin, 
the drug chosen as the standard for the study.

Larvicide properties

Mosquitoes are vectors that can transmit various diseases such as malaria, yellow 
fever, dengue, chikungunya, among others. In addition to synthetic insecticides such as 
organochlorine and organophosphorus compounds, currently, some insecticides are spe-
cific against this species and can be obtained by extracting phytochemicals from various 
ornamental plants (65, 66).

PIP is a potential insecticide and larvicide because it acts as a neurotoxin-like agent 
paralyzing the insects. The advantage of using it as an insecticide is the low toxicity for 
mammals and the fact that they are not persistent in the environment, degrading quickly 
under sunlight. In 2016, Samuel et al. (67) investigated the larvicidal effects of PIP against 
Anopheles arabiensis larvae from several resistant and susceptible strains and analyzed 
mortality in two stages: 24 and 48 h after the application of PIP in the larvae. They con-
cluded that the strains were susceptible to PIP.

Neuroprotection, activity against neurodegenerative diseases and other neuro-disorders 

Considering the main activities of PIP as an anti-inflammatory and antioxidant agent, 
several studies have sought to explore such properties and to verify the neuroprotective 
ability and treatment of the neuropathologies that derive from oxidative and inflamma-
tory processes.

Neuroprotector and Parkinson’s disease (PD). – In view of the complexity of PD pathogenesis 
including oxidative stress, altered mitochondrial metabolism, and neuroinflammation 
(68), studies were conducted using PIP to investigate its anti-PD potential given the anti-
oxidant and anti-inflammatory properties cited in previous sub-sections.

Shamsher et al. (69) combined PIP and curcumin to provide a better neuroprotective 
effect on behavioral, biochemical, neuroinflammatory, and neurochemical parameters in 
parkinsonian mice. They used 6-hydroxy dopamine (6-OHDA), a neurotoxin that causes 
serious motor and cognitive deficits in animals. The results showed that this combination 
significantly prevented behavioral, neuroinflammatory, and neurochemical changes and 
preserved the antioxidant potential of nigrostriatal in rats treated with 6-OHDA.

Rinwa et al. (70) evaluated the combination of quercetin, a bioflavonoid, and PIP to 
check the therapeutic potential of this combination against chronic unpredictable stress 
(CUS), which causes increased neuroinflammation and brain oxidative stress. In this 
study, these drugs were administered for 30 min daily before the CUS procedure. The 
 results showed that the combination of quercetin and PIP promoted a reduction in the 
oxidative damage, neuroinflammation, and memory deficits caused by CUS.

Liu et al. (71) evaluated the neuroprotective effect of PIP utilizing rotenone-induced 
neurotoxicity in SK-N-SH cells, in rat primary cortical neurons. The researchers concluded 
that PIP has a neuroprotective effect through the induction of autophagy. Also, another 
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study conducted by Wang et al. (72) investigated the mechanism by which alkaloids de-
rived from P. longum L. promote neuroprotection. They observed an improvement in rote-
none-induced motor deficits, as well as in the reduction in ROS production and mitochon-
drial properties related to inhibition of ROS production. Like in the previous study, it was 
also possible to identify stimulated autophagy, once again proving the neuroprotective 
potential of PIP and its derivatives.

Considering the neuroprotective potential of PIP, some studies have evaluated its po-
tential against Parkinson’s disease. Bi et al. (73) evaluated the activity of P. longum L. extract 
containing alkaloids (PIP and piperlonguminine) administered orally in a mice model 
induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The extract was admini-
stered at doses of 30, 60 and 120 mg kg–1, and the metabolism analysis of the dopaminergic 
neurons was done using UFLC-MS/MS, immunohistochemical assays, Western blotting, 
and verification of enzyme level oxidants. The researchers observed that PIP and its de-
rivatives have neuroprotective potential and optimization of dopaminergic neurons. Yang 
et al. (74) performed a similar study, administering 10 mg kg–1 of PIP in an MPTP model for 
15 days. They observed a reduction in the number of hydroxylase cells, oxidative stress, 
antiapoptotic property and IL-1 beta expression. They concluded, like the previous study, 
that PIP has a protective effect of dopaminergic neurons through its anti-inflammatory 
and antioxidant properties.

Anticonvulsant and antiepileptic properties. – Antiepileptic drugs, also called anticonvul-
sants, are intended to combat or prevent epileptic seizures. In general, anticonvulsants are 
well absorbed orally, with about 80–100 % of the drug reaching the bloodstream. Anticon-
vulsants can be divided into five main groups: (i) blockers of the sodium channels of re-
petitive activation, (ii) drugs that potentiate the actions of the gamma-aminobutyric acid 
(GABA) neurotransmitter, (iii) modulators of glutamate, another neurotransmitter, (iv) cal-
cium channel blockers, (v) carbonic anhydrase inhibitors (75, 76). A study undertaken by 
Mao et al. (77) in 2017 evaluated PIP as an anticonvulsant in epileptic mice induced by 
pilo carpine. The anticonvulsant effects of PIP decreased neuronal inflammation, neuronal 
oxidative stress in the hippocampus and memory impairment. It also suppressed the 
 increase in caspase-3 and Bax/Bcl-2 expression levels. They concluded that PIP prevented 
deterioration of memory and was able to reduce epileptic status.

Antidepressant properties. – The studies undertaken by Huang et al. (78) evaluated the 
antidepressant-like potential of the combination of trans-resveratrol and PIP. They ana-
lyzed behavioral neurochemical and biochemical parameters in vivo and demonstrated 
synergism in the activation of the monoaminergic system in the brain. Li et al. (79) studied 
the combination of ferulic acid (FA) and PIP and evaluated the possible mechanism 
 involved in reducing depression-like behaviors in mice. They observed a synergistic effect 
of the combined components, with monoaminergic system involvement. 

Cognitive benefits and Alzheimer’s disease. – PIP has been shown to improve cognitive 
performance after oral administration for a long period. Considering this benefit and the 
antioxidant activity, several studies have evaluated its potential use against the cognitive 
damage caused by Alzheimer’s disease. Chonpathompikunlert et al. (80) investigated the 
memory performance and neurodegeneration in in vivo models of Alzheimer’s disease 
after the oral administration of PIP. They observed that, at all doses tested, PIP demon-
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strated cognitive benefits and reduced neurodegeneration, possibly due to reduced lipid 
peroxidation and acetylcholinesterase enzyme.

To examine the antioxidant potential as well as the cognitive benefits of PIP, Khalili-
Fomeshi et al. (81) evaluated the lipid peroxidation and iron reduction in the cerebrospinal 
fluid and the dementia measure promoted by an experimental Alzheimer’s disease model 
in vivo. The authors observed a reduction in oxidative stress as well as cognitive enhance-
ment, after administration of PIP, suggesting that the antioxidant activity of PIP and the 
preservation of neurons in the hippocampus contributed to this result.

NANOTECHNOLOGICAL APPROACH TO INCREASE PIP SOLUBILITY 
AND BIOAVAILABILITY

The use of nanosystems has several advantages, such as the improvement in the dis-
solution rate and the bioavailability of poorly soluble drugs. However, several aspects 
must be considered for their application in the body, such as size and surface charge of the 
nanoparticle. Concerning the size, it is known that these nanosystems must be in the range 
of less than 200 nm to avoid the pre-systemic metabolism and to remain in the bloodstream 
for a long period. Besides, the charge of the nanosystem can influence efficiency. Positive 
charges are prone to be localized in the lungs, liver and spleen, while neutral and negative 
nanoparticles have a longer circulation life and less accumulation in organs (82).

Considering these parameters and the properties of PIP, to date, different types of 
nanosystems have been used to improve its bioavailability and increase its poor aqueous 
solubility, with polymer nanoparticles and liposomes being the most widely reported in 
the literature. The summary in Table II shows the nanosystems containing PIP developed 
in the last years, with their respective physical and chemical characteristics as well as some 
methods of their synthesis.

Types of encapsulated nanostructures with piperine

Liposomes. – Liposomes are structures formed by bilayers of phospholipids that can 
incorporate hydrophilic or hydrophobic molecules. They have several promising applica-
tions in the food industry because they can improve the bioavailability, stability and shelf-
life of some biomolecules (83). Dutta et al. (84) in 2017 encapsulated PIP in liposomes deve-
loped with phosphatidylcholine to use this alkaloid as a nutraceutical. It showed an 
encapsulation efficiency of 78.6 %, in addition to a size of 29.75 ± 0.84 nm. The in vitro 
studies indicated higher antioxidant potency (1.1 times) and better storage stability (2.4 
times higher at 4 ± 1 °C and 7.8 times higher at 70 ± 2 °C) when compared with pure PIP.

Micelles. – Polymeric micelles are core-shell structures formed by amphiphilic copoly-
mers, used for effectively encapsulating hydrophobic and hydrophilic medications. There-
fore, they are considered one of the most promising drug delivery systems to improve the 
solubility of highly hydrophobic molecules such as PIP (85, 86). Ding et al. (87) developed 
mixed micelles based on polyethylene glycol succinate (Soluplus®) and D-α-tocopherol 
(TPGS) to improve the solubility and anticarcinogenic effect of PIP. The obtained nano-
structures showed an approximate diameter of 61.9 nm, the zeta potential of –1.16 ± 1.06 
mV with 90.9 % of encapsulation efficiency and 4.67 % of loading efficiency of the PIP. Be-



204

C. R. Quijia et al.: Piperine: Chemical, biological and nanotechnological applications, Acta Pharm. 71 (2021) 185–213.

 

sides, the pharmacokinetic study revealed that the area under the curve of piperine-loaded 
mixed micelles was 2.56 times higher than that of PIP and the mean residence time was 
1.2-fold higher than PIP. In conclusion, these micelles could be a potential nanosystem for 
the administration of PIP for cancer chemotherapy.

Metallic nanoparticles. – Gold nanoparticles (AuNPs) have a great surface-to-volume 
ratio, excellent biocompatibility and low toxicity. They are a promising factor for new 
nanosystems, such as the functionalization of the surface with organic molecules: oligo-
nucleotides, antibodies, proteins and drugs (88). Besides, one of the medical problems in 
the use of insulin is the formation of fibrils. To overcome this problem, Anand et al. (89) 
developed a nanostructure to inhibit fibril aggregation. They synthesized thermostable 
gold nanoparticles of uniform size encapsulating PIP (PIP AuNPs) and used this alkaloid 
to functionalize the surface with PIP and attack insulin residues prone to amyloid. The 
obtained results revealed the union of PIP with the AuNPs and the insulin. The hemolysis 
tests confirmed that these nanoparticles were heme group compatible. In experimental 
and computational studies, they concluded that this nanosystem may retain the native 
structure of insulin and the ability of PIP to interact with the aggregation-prone residues 
of insulin that are key factors for the inhibition mechanism.

Nanofibers. – The synthesis of polymeric nanofibers has a characteristic high surface- 
-to-volume ratio and a high load capacity for various types of drugs. Jain et al. (90) designed 
a biodegradable polymeric system to release PIP for cancer treatment. The nanofibers were 
prepared with poly (ε-caprolactone) and gelatin by electrospinning, yielding a diameter 
from 300 to 400 nm. They confirmed the presence of the drug in the nanofiber mats by 
infrared Fourier transform spectroscopy. Besides, in vitro studies using HeLa and MCF-7 
cancer cells determined an anticancer activity. Also, flow cytometry revealed that PIP 
 induced the generation of reactive oxygen species (ROS) and the arrest of the cell cycle in 
the G2/M phase, which led to the death of cancer cells.

Polymeric nanoparticles. – Chitosan is a polymer, amino-polysaccharide, which is bio-
compatible and biodegradable. Another important feature is its positive charge, which 
makes it easy to interact with cell surfaces containing the negative charge. Therefore, it has 
a very promising ability to enhance drug absorption and release (91, 92). Baspinar et al. (93) 
developed zein-chitosan nanoparticles with PIP and curcumin. The authors obtained 
nanoparticles with an average size of 500 nm and encapsulation efficiencies of 87 % of PIP. 
Also, in vitro studies showed a reduction in the viability of approximately 50 % of the 
neuro blastoma cells.

Solid-lipid nanoparticles. – Solid-lipid nanoparticles (SLN) are nanosystems with great 
hydrophilic and hydrophobic drug loading capacity. Due to a large number of available 
routes of administration, these nanoparticles function differently depending on the type 
of formulation and the route of administration. They are formed by exchanging the liquid 
lipid of the emulsions for a solid lipid, the latter being solid both at room temperature and 
body temperature (94). Tang et al. (95) designed an SLN to incorporate curcumin and PIP 
that could sensitize MDR (multidrug resistance) tumors by inhibiting the P-gp. As a result, 
they showed a significant increase in the cytotoxicity and efficacy of the drugs in drug-
resistant A2780/taxol cells, thus initiating a new strategy to increase the clinical manage-
ment of MDR in cancer.



205

C. R. Quijia et al.: Piperine: Chemical, biological and nanotechnological applications, Acta Pharm. 71 (2021) 185–213.

 

CONCLUSIONS

This review provides updated information on the synthesis, metabolism and uses of 
PIP in biomedicine. Besides, it discusses PIP’s pharmacological potential in antioxidant, 
anticancer, anti-inflammatory activities, among others, as revealed by in vitro and in vivo 
studies. However, more studies are still needed on the pharmacological mechanism in 
most of its activities. Besides, the use of nanostructures with PIP has improved the thera-
peutic efficacy with a greater aqueous phase solubility and bioavailability in the target 
tissue. Yet, comprehensive studies are needed in the future to prepare various nano-
systems to address the problem of poor bioavailability and thus improve various  therapeutic 
PIP treatments.
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MDR – multidrug resistance, MMc – MitoMycin-c, MMP-9 – matrix metalloproteinase 9, MPTP – 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, NADPH – nicotinamide adenine dinucleotide phos-
phate, NF-κB – nuclear factor κ-light-chain-enhancer of activated B cells, NWR – normal Wistar rats, 
6-OHD – 6-hydroxy dopamine, P-gp – glycoprotein P, PIP – piperine, piperonyl-CoA – piperic acid-
coenzyme A ester, PLP – pyridoxal phosphate, PPAR-g – peroxisome proliferator-activated receptors, 
SHR – spontaneous hypertension, SLN – solid-lipid nanoparticle, Soluplus® – polyethylene glycol 
succinate, TBARS – thiobarbituric acid reactive substances, TNF – tumor necrosis factor, TPGS – D-α-
tocopherol, UDP-GDH – uridine diphosphate glucose dehydrogenase.
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