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Poly(DL-lactide-co-glycolide) (PDLLGA) and poly(L-lac-
tide-co-glycolide) (PLLGA) copolymers were prepared by
bulk ring opening polymerization of lactide and glyco-
lide and characterized by GPC, FTIR, 1H NMR and DSC.
Copolymers with different molar masses at a constant
lactide/glycolide ratio were used for preparation of bo-
vine serum albumin (BSA)-loaded microparticles by the
double emulsion w/o/w method. The influence of the co-
polymer molar mass and composition on the microparti-
cle morphology, size, yield, degradation rate, BSA-load-
ing efficiency and BSA release profile were studied. For
microparticles prepared from PDLLGA copolymers, a bi-
phasic profile for BSA release was found and for those
made from PLLGA copolymers the release profile was
typically triphasic; both of them were characterized by
high initial burst release. Possible reasons for such beha-
vior are discussed.
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The treatments for which proteins and peptides are prescribed as therapeutic agents
require stable levels of active components over prolonged periods. One way to meet
these requirements are sustained release systems, generally based on biodegradable po-
lymers, of which polylactide (PLA) and its copolymers (PLGA) with glycolide (GA) are
commonly used. An advantage of the lactide/glycolide copolymers is the well docu-
mented versatility in polymer properties (via manipulation of the comonomer ratio, mo-
lar mass, polymer crystallinity) and the corresponding performance characteristics (e.g.,
predictable in vivo degradation rates) (1, 2). In addition to the polymer chemistry, drug
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release rates can be controlled through variation of the microparticle formulation pa-
rameters, and thus the physical characteristics of the resulting particles (3-9). For pro-
teins with low or negligible solubility in polymers such as PLGA, the diffusional trans-
port through the polymer phase will be prevented. In this case, polymer degradation
will play a crucial role in the mechanism of protein release (2, 10-12). Based on this find-
ing tailoring of PLGA devices with suitable degradation properties that will allow a con-
trolled release of high molar mass, water-soluble protein for long term therapeutic appli-
cation has become an important area of research. Biodegradable microparticles have been
the most studied devices due to their relatively simple fabrication and facile administra-
tion to a variety of locations in vivo. Several methodologies for microencapsulation of
proteins and peptides have been developed. Most of them are essentially based on the
phase separation technique, such as the solid-in-oil-in-water (s/o/w) method (6, 12) or
emulsion-evaporation technique, such as the water-in-oil-in-water (w/o/w) method (7-9),
that enable production of particles with a wide range of mean diameters.

The aim of this study was to evaluate the influence of copolymers’ (PDLLGA and
PLLGA) molar mass and composition on the properties of bovine serum albumin (BSA)-
loaded microparticles prepared by the w/o/w emulsion technique. The copolymers were
prepared by bulk ring-opening polymerization (13) and characterized by GPC, FTIR, 1TH
NMR and DSC analyses. The influence of the copolymer molar mass and composition
on the drug release rate and the rate of degradation of polymeric microparticles were
also investigated.

EXPERIMENTAL

Materials

Poly(DL-lactide-co-glycolide) (PDLLGA) and poly(L-lactide-co-glycolide) (PLLGA)
were synthesized by bulk ring-opening polymerization (13) and characterized.

Albumin, bovine, fraction V, min. 96% was purchased from Sigma Chemical Co. (UK).
Radiolabelling of BSA was performed by 13! obtained from Biointernational (France).
Poly(vinyl alcohol) (PVA) (M,, 72 000 g mol-1, 98%, hydrolyzed) was supplied by Merck
(Germany). All solvents were of HPLC grade and were supplied by Merck.

Synthesis of poly(lactide-co-glycolide) copolymers

PLGA copolymers were prepared by ring opening polymerization of lactide (LA)
and glycolide (GA) in the presence of stannous octoate as catalyst (13). A solution of
stannous octoate in dry chloroform and a mixture of monomers were added to a reac-
tion tube (molar ratio monomer to catalyst was 1000). The molar ratio of the feed DL-
LA/GA was 85/15, and L-LA/GA was 75/25. The solvent was removed in vacuo, and
the tube was sealed and immersed in a silicon oil bath at 115 °C. At the end of polymer-
ization (24 h), the product was dissolved in a small amount of chloroform and precipited
in an excess of methanol. Actual copolymer composition, that is the molar ratio of mo-
nomers (DL-LA/GA or L-LA/GA) in copolymers, was found from 'H NMR analysis.
For PDLLGA, it was 80/20, and for PLLGA, 68/32.
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Copolymer characterization

The synthesized copolymers were characterized by FTIR, TH NMR, GPC and DSC.

The infrared spectra of copolymers were recorded on a Perkin Elmer 983 IR spectro-
meter (Perker Elmer, USA) at room temperature. The following IR peaks assigned to PLGA
were recorded (v, cm1): 2997-2965 (CH,, CHj), 1759 (C=0), 1360-1450 (CHj3), 750 (CH).

1H NMR spectra of the copolymers were obtained on a Bruker AC 200L spectrome-
ter (Bruker, USA) at 200 MHz, in deuterated chloroform at 20 °C. 1H NMR data were as
follows: (CDCl3, §, ppm): 1.56 (3H,CH3), 4.77 (2H,CH,), 5.18 (H, OCHCHy3;). The compo-
sition of copolymers was calculated from the ratio of absorbances at 4.77 and 5.18 ppm.

The molar masses of copolymers (mass average, M, and number average, M,) were
determined by gel permeation chromatography (Waters, USA) using the Waters styragel
column HT6F and Waters 410 differential refractometer detector. THF was used as the
eluting solvent at a flow rate of 1 mL min~! and polystyrene standards were used for ca-
libration purposes.

Thermal characterization of the copolymers was performed using a DuPont DSC
910 Model (DuPont, USA) device. The samples were scanned from —140 °C to +140 °C, at
a heating rate of 10 °C min~1. DSC samples were first heated under nitrogen to +140 °C,
then quenched to —140 °C using liquid nitrogen. This heating/cooling cycle was repea-
ted twice. The data were analyzed from the second heating run.

The main characteristics of the prepared copolymers are presented in Table I.

Table I. Main characteristics of copolymers

Feed ratio of mposition on the basi o
Copolymer LA /eéA (mcc:l /O mol) C?)f 1pI-CI)SNI\CJIRczmolimozi)s My PRI Tg O
PDLLGA 40-41
1 81/19 21850 1.65
1I 85/15 80/20 44 700 1.68
111 80/20 83800 294
PLLGA 47
1 75/25 68/32 44 050 230
2 68/32 88 000  1.95

M, — weight average molar mass; PDI — polydispersity or heterogeneity index (PDI = M,,/M,, where M, is the
number average molar mass); T, - glass transition temperature

Preparation of PLGA microparticles containing bovine serum albumin

Microparticles were prepared using the w/o/w emulsion technique (14, 15) accord-
ing to the following procedure. PLGA (0.05 g) was dissolved at room temperature in 1 mL
of dichloromethane (DCM) and cooled at 4 °C. Aqueous solution of 31I-BSA (2%, m/V,
0.5 mL) was sonicated into 1 mL solution of PLGA in DCM (5%, m/V) for 15 min to ob-
tain the first (w/o0) emulsion, which was then vortexed into 10 mL of cooled (4 °C) aque-
ous PVA solution (2% m/V) to prepare the w/o/w emulsion. Stirring for 3 h at 600 rpm
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was applied to remove the solvent. The isolated microparticles were successively wa-
shed with deionized water, collected by filtration (Sartorius Type 16692, Sartorius, Ger-
many) and freeze-dried (200 Pa, —40 °C, Christ o 2—4, Bioblock Scientific, France). Mi-
croparticles without BSA were referred to as »blank« ones.

Microparticle characterization

Size distribution analysis. — The mean geometric diameter and size distribution of the
population of BSA-loaded PLGA microparticles (before and after freeze-drying) dis-
persed in doubly-distilled water were determined using laser diffractometry (Particle
size analysette DLAB/22, Fritsch, Germany). Three independent analyses consisting of
100 repetitive measurements were performed.

Morphology studies. — Microparticles were placed on metal grids using double-sided
tape and coated with gold (thickness 2 nm) under vacuum (BAL-TEC MED 020 Coating
system, Balzers, Liechtenstein). The shape and surface characteristics of blank and BSA-
loaded PLGA microparticles were determined by scanning electron microscopy (Hitachi
S-450, Hitachi, Japan).

Yield and BSA-loading determination. — The microparticle yield was determined as ra-
tio between the mass of isolated, freeze-dried microparticles to the total initial mass of
the polymer and BSA. The content of radiolabelled 131I-BSA entrapped in PLGA micro-
particles was calculated as the percent of total radioactivity in the supernatant and in the
filtrate after microparticles isolation (»well« counter Scaler Type N529 D, EKCO Electro-
nics, UK) (16, 17).

In vitro degradation of PLGA microparticles. — Dispersion of blank microparticles (1.5
mg mL-1) was used to assess the in vitro degradation rate during incubation in phos-
phate-buffered saline (PBS, pH 7.4, 37 °C, 75 strike min~!, horizontal shaker; Haake SWB
20, Fisons, Germany). At regular time intervals, the dispersion was centrifuged at 8000
rpm for 30 min (Jouan MR 22i, Jouan S. A., Centrifuge, France), the total mass of
microparticles isolated and freeze-dried to a constant mass was determined and the per-
centage of remaining microparticles was calculated.

In vitro release of BSA from PLGA microparticles. — In vitro release studies were per-
formed by suspending the microparticles in isotonic PBS (mg microparticles per mL
buffer: 1.5-2.0 mg mL1) and by simulating the in vivo conditions as in biodegradation
studies. At each time interval, the 131[-BSA release was determined as the percent of total
radioactivity present in the microparticles and the supernatant. In order to determine
the initial and the last time release, the in vitro release profiles were described using the
exponential function: M,, — M/M = Ae %t + Be Bt +..., where M., is the total amount of
BSA released, M and M is the amount of BSA at zero time and the amount of BSA re-
leased at time ¢, A and B are system-characteristic constants, o and P are rate constants
for the initial and later time release, obtained by semilogarithmic plots (16-18).
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RESULTS AND DISCUSSION

Copolymers of DL- or L-lactide and glycolide with different molar masses (M,, from
21 000 to 88 000 g mol-1) and different content of glycolide (20 to 32%) (Table I) were
synthesized, characterized, and used for preparation of blank and BSA-loaded micro-
particles by the w/o/w method.

Microparticles were used to study the influence of the copolymer molar mass and
composition on the microparticle yield, their morphology, size and size distribution, as
well as on the BSA-loading efficiency. The data are given in Table II. The influence of the
copolymers and microparticles characteristics on the degradation rate and the rate of
BSA release were also studied.

Microparticle yield, morphology, size distribution and BSA-loading efficiency

In the case of all copolymers (I-III and 1-2, Table II), the blank microparticles were
spherical and non-porous vs. the porous structure of loaded microparticles. Representa-
tive scanning electron micrographs are given in Figs. la—d.

Table II. Main data for blank and loaded microparticles

BSA found in  Loading

Copolymer P(;Gg)A (]i?gA) Y(I;})d dg(e:r:_;ﬁD microparticles  efficiency d%;(;;_—)fD
(mg) (%, m/m)

PDLLGA?

MW
21 850 (I) 50 5 533 1147+125 0.425 8.5 16.01 +1.30
44 700 (II) 50 5 51.0 12.89+1.43 0.440 8.8 17.91 + 1.69
83 800 (III) 50 5 53.1 12.28 £1.55 0.635 12.7 19.37 £2.36

PLLGAP

MW
44 050 (1) 50 5 58.6 10.0+£1.33 0.890 17.8 19.35 +1.97
88 000 (2) 50 5 441 25.51 +1.67 1.635 32.7 70.45 £ 2.56

Lactide/glycolide molar ratio: 2 (80/20 mol/mol), b (68/32 mol/mol).
Mean geometric diameter n = 3 of: ¢ blank microparticles, ¢ loaded microparticles.

It was found that there were no significant differences in the particle size distribu-
tion of blank and loaded microparticles prepared from copolymers with different molar
masses when the DL-LA/GA molar ratio was 80/20. Thus, the size of microparticles ex-
pressed as the mean geometric diameter (+ SD, n = 3) ranged from 11.47 + 1.25 um to
12.28 + 1.55 um for blank, and from 16.01 + 1.30 pm to 19.37 + 2.36 um for loaded micro-
particles (Table II). This was not the case of PLLGA (with L-LA and molar ratio of L-
LA/GA = 68/32) microparticles; with the increase of the molar mass, the diameter rose
from 10.0 £ 1.33 um to 25.51 + 1.67 um for blank, and from 19.35 = 1.97 um to 70.45 + 2.56
um for loaded microparticles (Table II).
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Influence of the copolymer composition on particle size distribution was observed
in the copolymers with the highest M,,. Thus, for copolymers with comparable M,, (~
80 000 g mol-1) (copolymers III and 2, Table II), the mean geometric diameter for micro-
particles of 68/32 L-LA/GA copolymer was 70.45 um vs. 19.37 pm for microparticles of
80/20 DL-LA/GA copolymer.

The microparticles yield was similar for all series of PLGA microparticles and nearly
50% of the total initial mass. However, regarding the drug entrapment, a higher loading
efficiency was observed in the series with higher M,, and a higher content of GA (Table II).

A possible explanation for the increase of the microparticle size as well as the load-
ing efficiency with the increase of the copolymers molar mass and the content of GA

Fig. 1. SEM of blank PLGA microparticles: a) copolymer II and b) copolymer 2 and BSA-loaded
PLGA microparticles: ¢) copolymer II and d) copolymer 2. a) and c): bar stands for 10 pm;
b) and d): bar stands for 50 um). (For microparticles see also Table II).
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could be as follows. First, the copolymers with a higher molar mass (IIl and 2, Table II)
provide a more viscous solution. Emulsification of a solution of high viscosity is more
difficult and leads to a larger size of microparticles prepared by the w/o/w solvent evapo-
ration procedure. Higher viscosity may result in a faster microsphere hardening as well,
and thus in a more difficult diffusion of BSA out of the microsphere into the outer water
phase. Second, PLLGA has a higher content of the hydrophilic segment in the backbone,
which may interact with BSA and prevent BSA from diffusing out, resulting in higher
encapsulation efficiency. A similar explanation was proposed by Yang et al. (4).

Degradation rate of microparticles/polymers

Typical crystallinities for polyglycolide (PGA) are 46-52% (Tg = 36 °C), while for
poly(L-lactide) (PLLA) the crystallinity is around 37% (T;; = 57 °C) (19). Poly(DL-lactide)
(PDLLA) is amorphous. It was found (19) that the range of compositions from 25-70%
molar ratio of GA results in amorphous L-LA/GA copolymers. In the case of DL-LA in
copolymer, the amorphous region extends from 0-70% GA (19). It means that all our
samples are amorphous. In this case, water uptake, which is crucial for polymer degra-
dation, will depend on the content of hydrophilic GA in the copolymer and on its molar
mass. The influence of particle size, surface available for hydrolytic degradation and po-
rosity on the biodegradation rate has also to be taken in consideration.

The results represented in Figs. 2a,b show that a more rapid mass loss during the in
vitro degradation study occurred for the microparticles prepared from copolymers with
lower molar masses (copolymers I and 1). For the PDLLGA copolymers with the same
lactide/glycolide ratio (80/20), the polymer with the lowest molar mass of 21 850 g mol-1
degraded most rapidly (Fig. 2a). Similarly in PLLGA copolymers (68/32), the polymer
with the lower molar mass of 44 050 g mol~! degraded more rapidly than the polymer
with a higher molar mass of 88 000 g mol~! (Fig. 2b). For example, after 60 days, the total
mass of PLLGA microparticles with M,, 88 000 g mol-!, was reduced by 6.2%, while the
PLLGA microparticles with M,, 44 050 g mol~! showed a 34% mass reduction.

Influence of the difference in particles size on the degradation rate could also be ex-
pected. However, comparing the degradation of PDLLGA and PLLGA microparticles
with similar diameters and composed of polymers with similar M,, of 44 000 g mol-!,
but with a different lactide/glycolide ratio (copolymers II and 1, Table II), it seems that
the influence of the content of GA predominates. Microparticles prepared from polymers
with a higher glycolide content showed a more rapid mass loss. For example, during 60
days there was an 11% reduction in microparticle mass for PDLLGA microparticles (co-
polymer II; LA/GA = 80/20) and as high as 34% reduction in mass for PLLGA micro-
particles (copolymer 1; LA/GA = 68/32). Another reason for such behavior could be a
higher heterogeneity or polydispersity index, PDI (PDI = M,,/M,) for copolymer 1 (2.30)
compared to copolymer II (1.68). It could be expected that the faster degradation of the
lower molar mass fraction, present in copolymer 1, increases the local acidity, thereby
accelerating the hydrolysis of higher molar mass species.

During the early stages of the degradation of copolymers, there was a period of lit-
tle or no mass loss, especially for copolymers with higher molar masses. For example,
practically no degradation for the PDLLGA copolymer with M,, 83 800 g mol-! (copoly-
mer III, Table II) was noticed in the course of 60 days, while for PLLGA copolymer with
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M,, 88 000 g mol~! (copolymer 2, Table II) there was only a 6% reduction in microparticle
mass. It means that only a decrease of the molar mass can be expected in this period
which was confirmed by GPC measurements (Figs. 2a and b).

Deterioration in microparticle surface morphology

With the increase of the incubation time, the deterioration in the microparticle sur-
face morphology of blank microparticles became apparent under SEM (Figs. 3a—f). Smooth
and spherical microparticles from the beginning became less spherical as the study pro-
gressed. The rate of deterioration of the microparticles appearance was dependent on
the rate of polymer degradation, since microparticles prepared from higher molecular
mass copolymers exhibited surface deterioration at a much slower rate.
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Fig. 3. SEM of PDLLGA microparticles (with copolymer III): a) non-degraded, and b) after 7 months
of degradation; PLLGA microparticles (with copolymer 1): c) non-degraded and d) after 7 months
of degradation, and PLLGA microparticles (with copolymer 2): e) non-degraded and f) after 12
months of degradation (bars stand for 50 pm). (For microparticles see also Table II).
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In vitro release of BSA from microparticles

Due to the large molecular size of the proteins and their insolubility in polymers,
the rate of BSA release from PLGA microparticles is thought to depend mainly on the
rate of polymer degradation and BSA diffusion through the microparticle pores. For all
batches of the microparticles studied, there was an initial »burst« release of BSA during
the first hour of the study. This burst release probably represented the release of poorly
entrapped and surface-associated BSA. For the microparticles prepared from the PLLGA
(68/32) copolymers, the BSA release showed a typical triphasic release profile (Fig. 4a),
in which the initial release of BSA from microparticles prepared from copolymers with
the higher molar mass of 88 000 g mol-! (larger mean particle size) was considerably lo-
wer (~ 18% during 0.5 hours) than that for the 44 050 g mol-! polymer (~ 52% in the
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same period) (Table III). The same was true for the PDLLGA (80/20) particles, which
showed a biphasic release profile (Fig. 4b) where the initial burst of BSA from micro-
particles prepared from copolymers with lower molar masses of 21 850 and 44 700 g mol-!
was considerably higher than that for the 83 800 g mol~! copolymer. Namely, between 31
and 63% of BSA was released in the initial period of 0.5 hours, depending on the copoly-
mer molar mass and/or particle size and porosity (Table III).

Lower initial release from microparticles prepared from polymers with higher M,,,
or with a higher content of GA could be correlated with the already discussed influence
of the viscosity of the polymer solutions (faster hardening of microparticles with a more
compact core) or interactions of the hydrophilic segments with BSA during the encapsu-
lation which prevents the BSA from diffusing out. Thus the microparticles with a higher
diameter or prepared from polymers with higher M,, or a higher content of hydrophilic
component will show a lower burst effect and slower release.

After the initial burst release from PLLGA (68/32) microparticles, there was a lag
phase of low release, followed by a phase of constant BSA release in which, during 25
hours, 87% (copolymer 1) or 65% (copolymer 2) BSA was released (Fig. 4a). In 10 days
the BSA was released completely (data not shown graphically) (Table III).

For PDLLGA (80/20) microparticles after the initial release, there was a phase of
slow and constant release of BSA for a period of 7 days. Data are shown only for the first
25 hours. Namely, after 25 hours 88% (copolymer I), 85% (copolymer II) or 75% (copoly-
mer III) of BSA was released (Fig. 4b), and in 7 days the BSA was released completely
(Table IIT).

Table III. Kinetic parameters for the BSA release from PLLGA and PDLLGA microparticles

Initial »burst« Lag phase of Third phase of
Copolymer release low release constant release
Ry? K (b Ry K, (h™) Ry Ks(h)
PLLGA (68/32)
M,, (g mol)
44 050 (1) 1.000 1.492 0.994 0.165 0.974 0.009
88 000 (2) 1.000 0.397 0.984 0.056 0.910 0.006
PDLLGA (80/20)
M,, (g mol™1)
21 850 (I) 1.000 1.972 - - 0.961 0.016
44 700 (1) 1.000 1.665 - - 0.960 0.022
83 800 (III) 1.000 0.753 - - 0.963 0.021

2 Exponential dependence of the semilogarithmic plot on the amount of drug remaining vs. time in the initial
»burst« release

b Exponential dependence of the semilogarithmic plot on the amount of drug remaining vs. time in the lag
phase of release

¢ Exponential dependence of the semilogarithmic plot on the amount of drug remaining vs. time in the phase
of constant of release

R;—R; — respective correlation coefficients

K; — rate constant for the initial »burst« release, determined from the biexponential function.

K, - rate constant for the lag phase release, determined from the biexponential function.

K3 — rate constant for the phase of constant release, determined from the biexponential function.
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In the early phase including the lag phase, the protein release is governed by a dif-
fusion-controlled mechanism through a network of water filled pores and channels. In
the later phase, erosion of the polymer matrices is considered to control protein release
from the core of microparticles (20). This explanation could be correlated with the hy-
drophobic/hydrophilic properties of the two series of microparticles, with the micropar-
ticle sizes and with the character of molecular mass changes during the blank micro-
particles degradation process (Figs. 2a,b).

Another serious problem in delivering protein pharmaceuticals is their inherent
physical and chemical instability. Potential sources of irreversible deactivation of pro-
teins encapsulated in PLGA microparticles are the following (12). First, exposure to or-
ganic solvents, which is a »stress« factor for proteins, during microparticles formulation;
second, increased levels of moisture providing higher protein mobility; third, an acidic
environment produced by acidic degradation products and carboxylic acid end groups
of PLGA; and fourth, adsorption of the protein to the polymer surface, which may cata-
lyze protein conformation changes from a-helix into B-sheet, resulting in its aggregation,
and thus irreversible protein activity loss.

The impact of the encapsulation procedure on the secondary structure of BSA was
preliminarily assessed using FTIR spectroscopy, from the amide I region. Technical and
theoretical limitations enable determination of only three regions of vibrations, amide I,
IT and III, of the existing nine (A, B, I-III). The fact that 90% of IR investigations of the
secondary protein structure are referred to amide I region (C=0O, CN, CCN def.) resulted
in an analysis of only this spectral region (21, 22). According to Jackson et al. (21), the
free amide I vibrations are expected at 1670 cm~!, while vibrations at 1695 cm~! are a re-
sult of a strong transitional dipole bonding in B-conformations. Thus, vibrations for the
protein amide I region appear between 1700 and 1600 cm™1.

The secondary structure of BSA from the amide I region, according to the methods
suggested by Byler and Susi (23), as well as Prestrelski et al. (24) and Bramanti and Be-
nedetti (25), was determined after the Fourier-deconvolution of FTIR spectra, using an
iterative curve fitting procedure of the Gauss-Lorenzian function. The content of a-helix
was selected as a solid parameter for structural integrity, and it was calculated using the
peak area in the characteristic frequency region (1660-1653 cm!). Our preliminary re-
sults showed that in the microparticles obtained from all copolymers, the secondary
structure of BSA was preserved up to 30%.

Our further research is focused on the investigation of the influence of various stages
or various procedures for microparticles preparation on the encapsulated protein activity.

CONCLUSIONS

Poly(lactide-co-glycolide) copolymers with different molar masses and a different
molar ratio of DL-lactide or L-lactide to glycolide were used for the preparation of blank
and BSA loaded microparticles by the w/o/w method. It was found that the copolymers
molar mass and composition influence the mean geometric diameter of blank and load-
ed microparticles, as well as their loading efficiency. This was correlated with the viscosity
of the copolymer solutions and the specific interactions with the hydrophilic segments
in the copolymer backbone.

226



A. Porjazoska et al.: Poly(lactide-co-glycolide) microparticles as systems for controlled release of proteins — Preparation and characte-
rization, Acta Pharm. 54 (2004) 215-229.

The BSA release profiles, triphasic for microparticles of PLLGA and biphasic for
those of PDLLGA, were correlated with the microparticles morphology, size and porosi-
ty, as well as with the hydrophobic/hydrophilic properties and molar masses of copoly-
mers and their degradation rates (mass loss and molar mass reduction).

Preliminary analyses of the FTIR spectra of BSA-loaded microparticles, in the amide
I region, showed that the secondary protein structure was preserved to about 30%, on
the basis of the calculated a-helix content. However, detailed investigations of the mag-
nitude of different stages of the procedure-induced protein structural perturbations dur-
ing encapsulation are in progress.
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SAZETAK

Poli(laktid-ko-glikolid) mikrocestice kao sustavi za kontrolirano
oslobadanje proteina — Priprava i karakterizacija

ALEKSANDRA PORJAZOSKA, KATERINA GORACINOVA, KRISTINA MLADENOVSKA, MARIJA GLAVAS,
MAJA SIMONOVSKA, EMILIJA IVANOVSKA JANJEVIC i MAJA CVETKOVSKA

Poli(DL-laktid-ko-glikolid) (PDLLGA) i poli(L-laktid-ko-glikolid) (PLLGA) kopolimeri
priredeni su polimerizacijom laktida i glikolida uz otvaranje prstenova i karakterizirani
pomoéu GPC, FTIR, H NMR i DSC. Kopolimeri razli¢itih molarnih masa i stalnog omje-
ra laktida i glikolida upotrebljeni su za pripravu mikrocestica s govedim serumskim
albuminom (BSA) metodom dvostruke emulzije tipa voda/ulje/voda. Proucavan je utjecaj
molarne mase i sastava kopolimera na oblik, veli¢inu, iskoristenje i stupanj razgradnje
mikrocestica, uklapanje i oslobadanje BSA. Za mikrocestice pripravljene s PDLLGA ko-
polimerom utvrden je bifazi¢ni profil oslobadanja BSA, a za mikrocestice s PLLGA ko-
polimerom trifazic¢an profil. Za obje vrste karakteristi¢no je brzo pocetno oslobadanje.
Razmatrani su mogudi uzroci takvog ponasanja.

Kljucne rijeci: poli(laktid-ko-glikolid), mikrocestice, protein, in vitro oslobadanje
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