
There is a constant need to develop new anti-infective drug molecules because the
antibiotics and antiviral drugs always face a threat of resistance development, which may
eventually lead to therapeutic failure. Drug discovery and development is a lengthy and
costly process and many drug candidates fail at the later stages of development due to
poor pharmacokinetic (PK) properties, i.e., absorption, distribution, metabolism and ex-
cretion (ADME) (1). The success rate in drug discovery can be increased by predicting
the PK properties of virtual molecules in the early stages and this will also reduce the
cost of drug development. Computational or in silico methods are increasingly used in
drug discovery to predict the properties of virtual molecules (2). Quantitative structure-
-activity relationships (QSARs) are mathematical models that attempt to relate the struc-
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ture of a compound to its biological or physicochemical activity. Similarly, the quantitative
structure-pharmacokinetic relationship (QSPkR) is used to model pharmacokinetic sys-
tems.

The volume of distribution (Vd) is an important PK property, which determines the
extent of drug distribution in the body. The Vd, which is calculated as proportionality
constant, considers drug distribution between organs and tissues to be homogeneous. It
represents a measure of relative partitioning of the drug between plasma and the tis-
sues. The Vd has a significant impact on other PK properties, such as clearance and half-
-life. Drugs having low Vd values require more frequent dosing intervals, whereas high
values require less frequent dosing intervals. A higher Vd relates to greater tissue parti-
tioning, which means that the drug can penetrate into tissues as well as bind reversibly
to tissue components. For this reason, it is necessary for an administered drug to have
appropriate tissue distribution. This is of particular interest to antibiotic dosing, where
tissue distribution of the antibiotic mainly regulates the clinical effectiveness and toxic-
ity. The tissue distribution reflected on Vd is also essential before making comparisons
between antibiotics.

There are few studies on modeling the antibiotic Vd based on QSPkR and the at-
tempts were generally confined to small sets of compounds and in some cases to sets of
analogues. Chee et al. (3) developed QSPkR models to predict the volume of distribution
of 44 antimicrobial agents in humans using the k-nearest-neighbor (k-NN) and partial
least-square (PLS) methods. Turner et al. (4) reported an artificial neural network model
to predict the volume of distribution and other PK properties for a series of 20 cephalo-
sporins.

The present study was undertaken to establish a QSPkR model for predicting the
volume of distribution of 126 anti-infective drugs belonging to different sub-therapeutic
classes, antibacterial, antimycotic, antimycobacterial and antiviral, using theoretically cal-
culated descriptors. In this attempt, we used nonlinear artificial neural network (ANN)
and support vector machine (SVM) as well as multiple linear regression (MLR) methods.
A large set of descriptors were calculated and a correlation based feature selection (CFS)
method was employed to select the best set of descriptors for modeling.

EXPERIMENTAL

Dataset

To develop successful QSPkR models, reliable and good quality pharmacokinetic
data is required. Human pharmacokinetic data is difficult to compile because PK values
are derived from different studies in which experimental approaches differ. It is essential
that data used in QSPkR modelling are obtained from studies in which the dose was ad-
ministered intravenously. Thus, the Vd values are not confounded by effects of slow and
incomplete absorption or extensive first-pass extraction. A carefully collected database
of human pharmacokinetic parameters of drugs exclusively from intravenous adminis-
tration was reported by Obach et al. (5). In this database, only intravenous data from
rapid bolus injection or infusions were included and no data from oral, i.m., or any other
dosing routes. From this database, we have used Vd data of 126 anti-infective agents for
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the present study. The selected drugs fall under the category of anti-infective (J) and sub-
categories antibacterial (J01), antimycotics (J02), antimycobacterial (J04) and antiviral (J05)
according to the anatomical therapeutic classification (ATC) (6).

The volume of distribution values in steady state is expressed in liters per kilogram
(L kg–1). The Vd values range from 0.05 to 33 L kg–1 in the studied anti-infective drug
dataset. The Vd values are converted to the logarithmic scale (log Vd) and then used as
dependent variables like in the QSPkR analysis. A list of the anti-infective drugs and
their corresponding log Vd values used in the present study is given in Supporting In-
formation. External validation is an absolute requirement to obtain a truly predictive
model (7). Therefore, the dataset was divided into a training set and test set for external
validation. In this study, the division of the dataset into the training and test sets was
done first by ranking the compounds according to their log Vd values and then taking
every fifth compound as an external test compound and removing it from the dataset. The
external test set of compounds was selected prior to the development of models.

Molecular descriptors

The molecular structure was searched using the PubChem Compound Database (8)
and was built by using the ChemAxon software package (v.5.4, ChemAxon, Budapest,
Hungary). All molecules were cleaned using standardizer tool available in ChemAxon
to get uniform structure representations. The salts counter ions were removed and neu-
tralized the atomic charges of molecules without producing valence errors on atoms. The
molecular structure was then 3D optimized using CORINA (Molecular Networks, GmbH,
Erlangen, Germany) and molecular descriptors were calculated using E-DRAGON (v.1,
Milano Chemometrics, Milan, Italy); they are part of the on-line software provided by
the Virtual Computational Chemistry Laboratory (9).

Descriptor selection and linear model generation

The selection of descriptors is an essential step in modeling. A large number of stru-
ctural descriptors are generated by E-Dragon software. Therefore, the selection of proper
descriptors to establish QSPkR models is a very important step to reduce over-fitting
and improve the overall model predictability. Machine learning algorithms can be used
for descriptor selection. In machine learning, first a descriptor sub-set is selected before
the learning process. This reduces the dimensionality of data by removing unsuitable
descriptors and improves the learning. In this study, we employed a filter based method
called correlation-based feature selection (CFS) which was introduced by Hall and Hol-
mes (10). CFS evaluates subsets of attributes rather than individual attributes. It is a sub-
set evaluation heuristic that takes into account the usefulness of individual features for
predicting the class along with the level of inter-correlation among them. The heuristic
assigns high scores to subsets containing attributes that are highly correlated with the
class and have low inter-correlation with each other:
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where Ms is the »merit« of a feature subset S containing k features, rcf is the average fea-
ture-class correlation and rff is the average feature-feature inter-correlation. The numera-
tor of the above equation provides an indication of how predictive a set of features are;
the denominator indicates how much redundancy there is among the features. The heu-
ristic removes irrelevant features because they will be poor predictors of the class and
redundant attributes that are highly correlated with one or more of the other features. In
order to find the merit of a feature subset, it is necessary to compute correlation (de-
pendence) between attributes. CFS first discretizes numeric features and then uses sym-
metrical uncertainty to estimate the degree of association between discrete features. Af-
ter computing a correlation matrix, CFS applies a heuristic search strategy to find a good
subset of features, according to the above equation.

We used the forward selection search, which produces a list of selected attributes.
The reduced datasets was then passed to a machine learning scheme for linear modeling
to produce a linear model. The entire process of descriptor selection and model building
was implemented in WEKA data mining software (v.3.4, University of Waikato, Hamil-
ton, New Zealand).

Validation techniques and model performance evaluation

The performance of the models was evaluated using the error measures, root mean
square error (RMSE) and mean absolute error (MAE). They were calculated using the
following formula:
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where n is the number of data points, the parameter log Vd pred represents the predicted
output from the model for a given input, while log Vd obs is the observed value for the
same input.

We used a 10-fold cross-validation technique for selecting the models and their pa-
rameters. This procedure divides the dataset into 10 folds or groups and creates the mo-
del using 9 of the sets and tests it on the remaining group. This procedure is repeated
until each of the 10 groups has served as a test group. The error estimates, RMSE and
MAE are calculated and then averaged. Here, the 101 training dataset was randomly di-
vided into 10 groups and the model was trained on 9 groups and the remaining group
was used for testing each time.

The overall accuracy of predicted parameters was expressed in terms of average fold-
-error, which was calculated as the mean of the individual fold-error values (11). Fold er-
ror (FE) was calculated according to the following equation and the average values were
reported as average fold-error AFE.
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FE V V� �anti d obs d predlog log log (4)

Tropsha et al. (7) strongly advocate rigorous validation of models before their practi-
cal application or interpretation. To estimate the predictive power of a model, these au-
thors recommended a set of statistical criteria: (i) correlation coefficient, R, between the
predicted and observed activities; (ii) coefficients of determination (predicted vs. obser-
ved activities, R0

2, and observed vs. predicted activities, R0
2' , for regressions through the

origin); (iii) slopes k and k' of regression lines (predicted vs. observed activities, and ob-
served vs. predicted activities) through the origin. The model has an acceptable predic-
tive power if the following conditions are satisfied:
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Roy et al. (12) proposed another parameter, Rm(test)
2 , for external predictability and this

is calculated as:

R R R Rm(test)
2 2 2

0
21� � �( ) (5)

where R0
2 is the squared correlation coefficient between the observed and predicted values

of the test set compounds with intercept set to zero. The recommended value of Rm(test)
2

for successful predictability is greater than 0.5.
Relevant descriptors for modeling were selected from a large pool of 1664 Dragon

descriptors. It is necessary to check the possible existence of any chance correlation. A
randomization or permutation test was carried out to check the existence of chance cor-
relation. The dependent variable, log Vd, was randomly shuffled and a new QSPkR mo-
del was developed, using the MLR algorithm. The procedure was repeated several times
and the new models are expected to have low R2 values. This was further tested by a
new parameter, Rp

2, which penalizes the model R2 for the difference between the squared
mean correlation coefficient (Rr

2) of randomized models and squared correlation coefficient
(R2) of the non-randomized model (12). The Rp

2 is calculated by the following equation:

R R R Rp r
2 2 2 2� � (6)

The value of Rp
2 should be greater than 0.5 for an acceptable model to ensure that

the developed model was not obtained by chance.
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Artificial neural network

The theory and application of ANN studies in QSPR modelling is extensively dis-
cussed in many reviews (13). A conventional three-layered back-propagation network
was employed in this study. The back-propagation ANN uses the supervised learning
technique and the network is trained by minimizing the squared error of the network’s
output. The error is calculated between the desired values and the network’s output. This
error is propagated backwards through the network for adjusting the weights to mini-
mize the error.

The architecture of the network consists of five neurons in the input layer, which
correspond to the five significant descriptors selected in the linear model and one neu-
ron in the output layer which is the log Vd value. A sigmoid transfer function was used
for each neuron in all layers. The number of neurons in the hidden layer was selected by
varying the number and the best model giving the lowest RMSE and the highest correla-
tion coefficient. The learning rate and momentum parameters were optimized by vary-
ing the values and the optimum was selected. The over-fitting problem was minimized
by monitoring the performance of the network during training by using a validation da-
taset. The software has a facility to select a certain percentage of data as a validation set
and we used 20 % of the training dataset for validation. A 10-fold cross validation was
done during the selection of the above network parameters.

Support vector machines

A support vector machine (SVM) is a supervised learning algorithm originally deve-
loped for pattern classification problems. This technique has had much success in QSAR
modeling studies and the details are given in literature (14). In SVM, the input data is
first mapped into a high-dimensional feature space by the use of kernel function and
then linear regression is performed in the feature space. The nonlinear feature mapping
will allow the treatment of nonlinear problems in a linear space. In the higher dimen-
sional feature space, SVM approximates the set of data with a linear function:

y w x bi i

i

m

� �
�

� �( )
1

(7)

where F(xi) are the features of input variables after kernel transformation while wi and b
are coefficients. The radial basis function (RBF) kernel is commonly used in QSPR problems.
The RBF kernel can perform nonlinear mapping as described by the following equation:

k x y x y( , ) exp( )� � �g
2

(8)

After kernel transformation, the new feature space allows the data to be linearly se-
parable by hyper planes or conduct a linear regression. Coefficient w and b are estimated
by minimizing the regularized risk function which is defined as:
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� is the empirical error (risk) and it is measured by

e insensitive loss function, where e is a prescribed parameter and is referred to as the
tube size, and it is defined as the approximation accuracy placed on the training data
points. The loss function ignores errors as long as it is less than e; in other words, errors

below e would not be penalized. The second term
1
2

2
w , the regularization term, is a

measure of function flatness. The value of the cost function C determines the regularized
constant and determines the trade off between the empirical error and the regularized
term. Minimization of the regularized risk function is a constrained optimization prob-
lem that can be reformulated into dual problem formalism by using Lagrange multipli-
ers. The support vector regression calculations are performed using John Platt’s sequen-
tial minimal optimization (SMO) algorithm modified by Smola and Scholkopf in WEKA
software (15).

The first step in the SVM model construction is selection of the kernel type and then
optimization of the kernel parameter. We selected the RBF kernel, so that the value of
kernel parameter g (gamma) would be optimized. The next step was optimizing parame-
ter e of e-insensitive loss function, and complexity parameter or regularization parame-
ter C. After optimizing the values C, e and g the support vector machine was first trained
on a training dataset having known log Vd values and the trained SVM was used to pre-
dict log Vd values for test data. SVM performance depends on selection of the kernel
type and optimizing parameters C, e and g, so a ten-fold cross validation is used in the
optimization process.

RESULTS AND DISCUSSION

Descriptor selection and linear model

By using E-DRAGON, a total of 1664 descriptors were computed, including 1D, 2D
and 3D descriptors. The Vd data of 126 anti-infective drugs was partitioned into an ex-
ternal test set of 25 compounds and a training set of 101 compounds. The selection of
relevant descriptors is an important step for constructing a predictive model. The train-
ing dataset was used to describe selection using the CFS method. This method estimated
a subset of 20 descriptors from a pool of 1664 dragon descriptors. The reduced descrip-
tor subset was then used for linear model building using a forward step-wise multiple
linear regression analysis. The resulting linear model selected five descriptors to give a
stable model with R = 0.860, RMSE = 0.239, MAE = 0.181. The selected descriptor vari-
ables are nNR2, PJI2, Mor23v, Mor28e and nBlct and their values are given in Support-
ing Information.

The resulting equation with five descriptors is as follows:
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log Vd = 0.269(± 0.456) + 0.205(± 0.071) nNR2 – 0.682(± 0.503) PJI2 – 0.512(± 0.275)

Mor23v – 0.193(± 0.127) Mor28e – 0.433(± 0.109) nBlct

N = 101, R = 0.860 R2 = 0.740 SE = 0.247 Rcv
2 = 0.648 (10)

where R is the correlation coefficient, SE is the standard error of estimate. The figures in
parentheses with the regression coefficients are standard errors of coefficients. The cor-
relation matrix for selected parameters nNR2, PJI2, Mor23v, Mor28e and nBlct and also
for log Vd is given in Table I. The correlation matrix shows no intercorrelation of selected
descriptors. This was further confirmed by calculating the variance inflation factor (VIF)
and tolerance. The VIF = 1/1–R2 and tolerance = 1/VIF. In practice, when VIF > 5 or if
the tolerance remains less than 0.20, then this would indicate multicollinearity amongst
the descriptors. The calculated VIF and tolerance values are given in Table II. There is no
multicollinearity problem for the selected five descriptors. The developed model was
cross-validated by the leave-one-out (LOO) method and the calculated cross-validation
parameter Rcv

2 (cross validated correlation coefficient). The high value observed is indic-
ative of their reliability in prediction.
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Table I. Inter-correlation of descriptors

log Vd nNR2 PJI2 Mor23v Mor28e nBlct

log Vd 1.000

nNR2 0.665 1.000

PJI2 –0.242 –0.022 1.000

Mor23v –0.446 –0.309 0.003 1.000

Mor28e –0.446 –0.348 0.204 0.402 1.000

nBlct –0.637 –0.388 0.110 0.100 0.046 1.000

nNR2 – total number of aromatic and aliphatic tertiary amino groups, PJI2 – Petitjean shape index, Mor23v –
3D-MoRSE signal 23/weighted by atomic van der Waals volumes, Mor28e-3D-MoRSE signal 28/weighted by
atomic Sanderson electronegativities, nBlct – number of beta-lactam rings

Table II. Collinearity statistics

Descriptor Tolerance VIF

nNR2 0.712 1.405

PJI2 0.932 1.074

Mor23v 0.800 1.250

Mor28e 0.731 1.368

nBlct 0.825 1.212

VIF – variance inflation factor



The obtained MLR model was validated using the Y-randomization tests to deter-
mine the probability of chance correlation during descriptor selection. Twenty random
shuffles of the log Vd values were chosen, and the models were developed for the train-
ing dataset, using the original descriptor matrix. All the models obtained in the randomi-
zation test have very low R2 values, which are shown in Table III. Lower values of R2 in
comparison with the real model’s results corroborate that the descriptor selection by the
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Table III. Results of randomization test

Iteration R2 Iteration R2

1 0.051 11 0.020
2 0.019 12 0.040
3 0.028 13 0.026
4 0.024 14 0.058
5 0.101 15 0.022
6 0.052 16 0.035
7 0.095 17 0.045
8 0.076 18 0.041
9 0.013 19 0.042

10 0.033 20 0.051

y = 0.7395x – 0.0935

R2 = 0.7396
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Fig. 1. A comparison of experimental vs.
predicted log Vd using: a) MLR model, b)
ANN model, c) SVM model.



MLR model was not due to a chance correlation. There is a real relationship between the
molecular structure description (descriptors) and the log Vd values of the studied set.
The calculated value of Rp

2 for the model is 0.617 and this is above the stipulated value of
0.5, which further proves that the model developed was not by chance.

The predicted value of log Vd of the training dataset, using this model, is plotted
against experimental values and is shown in Fig. 1a. The above linear model was used to
predict the 25 external test data set which was never used in descriptor selection or mo-
del building. The result shows R2 = 0.671, MAE = 0.197 and RMSE = 0.280. The predicted
values of log Vd of the training and test set using the MLR equation are given in Table IV.

The selected five descriptors, i.e., nNR2, PJI2, Mor23v, Mor28e and nBlct, provide
some insight into the structural influence on the volume of distribution of anti-infective
agents in humans.

The 3D-MoRSE descriptors Mor23v and Mor28e are the 3D-MoRSE-signal 23/wei-
ghted by atomic van der Waals volumes (Mor23v) and 3D-MoRSE-signal 28/weighted
by atomic Sanderson electronegativities (Mor28e) (16). Petitjean shape index (PJI2) is a
topological 2D descriptor (17). The other two descriptors, nNR2 and nBlct, represent the
functional group count in the molecule. The nNR2 is the total number of aromatic
(nArNR2) and aliphatic (nRNR2) tertiary amino groups present in the molecule while
nBlct is the number of beta-lactam rings in the molecule.

The 3D-MoRSE descriptors are the 3D molecular representations of the structure ba-
sed on electron diffraction; they are calculated by summing up atomic mass viewed by a
different angular scattering function (16). The values of these descriptor functions are
calculated at 32 evenly distributed values of scattering angle(s) in the range of 0–31A0–1

from the three-dimensional atomic coordinates of a molecule. The 3D-MoRSE descriptor
is calculated using the following expression:

Morsw w w
sr

sri j

ij

ijj i

nAT

i

nAT

�
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�

��
sin( )

11

1

(11)

wi and wj are the characteristic properties of atoms i and j (including unweighted mas-
ses, van der Waals volumes, Sanderson electronegativities, and polarizabilities), rij is the
interatomic distance, and nAT is the number of atoms in the molecule, and s is the scat-
tering angle. The selected descriptors Mor23v and Mor28e in the linear model reflect the
negative influence of van der Waals volumes and electronegativities on the Vd values.

Petitjean shape index (PJI2) is a topological anisometry descriptor (17). It is also called
graph-theoretical shape coefficient and PJI2 and is defined as:

PJI
D R

R
2 0 12�

�
� �ad

ad

I (12)

where Rad is the topological radius and D is the topological diameter obtained from the
distance matrix representing the molecular graph. The shape of a molecule is an impor-
tant property determining many biological properties; here we observe that the topologi-
cal shape of the molecule has a negative influence on log Vd values.
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Table IV. Observed and predicted values of log Vd and the residual values

Drug
obs log

Vd

MLR
predict

Residual
ANN

predict
Residual

SVM
predict

Residual

Abacavir –0.076 –0.077 –0.001 –0.076 0 –0.074 0.002

Adefovir –0.377 –0.297 0.080 –0.294 0.083 –0.290 0.087

Amdinocillin –0.432 –0.378 0.054 –0.384 0.048 –0.545 –0.113

Amikacin –0.796 –0.696 0.100 –0.588 0.208 –0.683 0.113

Amoxicillin –0.602 –0.728 –0.126 –0.645 –0.043 –0.593 0.009

Ampicillin –0.658 –0.796 –0.138 –0.741 –0.083 –0.683 –0.025

Azithromycin 1.519 0.583 –0.936 1.580 0.061 1.029 –0.490

Biapenem –0.699 –0.643 0.056 –0.746 –0.047 –0.719 –0.020

Cefamandole –0.796 –0.803 –0.007 –0.761 0.035 –0.724 0.072

Cefatrizine –0.658 –0.745 –0.087 –0.658 0 –0.606 0.052

Cefazolin –0.921 –0.848 0.073 –0.895 0.026 –0.811 0.110

Cefcanel –0.886 –0.775 0.111 –0.691 0.195 –0.661 0.225

Cefepime –0.553 –0.712 –0.159 –0.812 –0.259 –0.758 –0.205

Cefixime –0.620 –0.843 –0.223 –0.784 –0.164 –0.729 –0.109

Cefodizime –1.268 –0.635 0.633 –0.764 0.504 –0.802 0.466

Cefoperazone –0.770 –0.849 –0.079 –0.804 –0.034 –0.761 0.009

Ceforanide –0.770 –0.848 –0.078 –0.778 –0.008 –0.712 0.058

Cefotaxime –0.721 –0.759 –0.038 –0.763 –0.042 –0.749 –0.028

Cefotetan –0.886 –0.735 0.151 –0.803 0.083 –0.774 0.112

Cefoxitin –0.770 –0.813 –0.043 –0.785 –0.015 –0.762 0.008

Cefprozil –0.678 –0.712 –0.034 –0.656 0.022 –0.629 0.049

Ceftizoxime –0.699 –0.790 –0.091 –0.812 –0.113 –0.812 –0.113

Ceftobiprole –0.569 –0.901 –0.332 –0.795 –0.226 –0.682 –0.113

Ceftriaxone –1.071 –0.746 0.325 –0.817 0.254 –0.835 0.236

Cephalexin –0.678 –0.861 –0.183 –0.756 –0.078 –0.629 0.049

Cephaloridine –0.337 –0.787 –0.450 –0.682 –0.345 –0.634 –0.297

Cephalothin –1.155 –0.830 0.325 –0.845 0.310 –0.814 0.341

Cephapirin –0.886 –0.837 0.049 –0.857 0.029 –0.815 0.071

Chlortetracycline –0.046 –0.109 –0.063 0.066 0.112 –0.056 –0.010

Cidofovir –0.310 –0.415 –0.105 –0.405 –0.095 –0.443 –0.133

Ciprofloxacin 0.322 0.311 –0.011 0.180 –0.142 0.309 –0.013

Clarithromycin 0.176 0.419 0.243 0.368 0.192 0.194 0.018

Clavulanic Acd –0.658 –0.688 –0.030 –0.710 –0.052 –0.574 0.084

Clinafloxacin 0.279 0.325 0.046 0.186 –0.093 0.293 0.014

Clindamycin –0.102 0.073 0.175 0.105 0.207 0.052 0.154

Dapsone –0.081 –0.227 –0.146 –0.357 –0.276 –0.194 –0.113
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Demethylchlor-
tetracycline

0.114 –0.086 –0.200 0.070 –0.044 –0.054 –0.168

Dibekacin –0.886 –0.580 0.306 –0.478 0.408 –0.598 0.288

Dicloxacillin –0.959 –0.650 0.309 –0.696 0.263 –0.714 0.245

Didanosine –0.114 –0.186 –0.072 –0.163 –0.049 –0.150 –0.036

Doxycycline –0.161 –0.012 0.149 0.093 0.254 –0.008 0.153

Ertapenem –0.921 –0.740 0.181 –0.737 0.184 –0.734 0.187

Erythromycin –0.022 0.268 0.290 0.134 0.156 0.186 0.208

Ethambutol 0.230 –0.217 –0.447 –0.126 –0.356 –0.192 –0.422

Fleroxacin 0.204 0.330 0.126 0.309 0.105 0.101 –0.103

Flucloxacillin –0.721 –0.580 0.141 –0.662 0.059 –0.698 0.023

Fluconazole –0.125 –0.102 0.023 –0.150 –0.025 –0.011 0.114

Flucytosine –0.167 –0.167 0 –0.090 0.077 –0.172 –0.005

Foscarnet –0.301 –0.084 0.217 –0.011 0.290 –0.188 0.113

Fosfomycin –0.495 –0.392 0.103 –0.379 0.116 –0.412 0.083

Ganciclovir 0 –0.202 –0.202 –0.166 –0.166 –0.170 –0.170

Imipenem –0.620 –0.722 –0.102 –0.756 –0.136 –0.707 –0.087

Indinavir –0.086 0.299 0.385 0.191 0.277 0.231 0.317

Isepamicin –0.495 –0.584 –0.089 –0.463 0.032 –0.594 –0.099

Itraconazole 0.869 0.538 –0.331 0.927 0.058 0.758 –0.111

Kanamycin –0.585 –0.764 –0.179 –0.708 –0.123 –0.699 –0.114

Lamivudine 0.114 –0.215 –0.329 –0.158 –0.272 –0.190 –0.304

Levofloxacin 0.079 0.250 0.171 0.211 0.132 0.191 0.112

Lincomycin 0 –0.001 –0.001 0.095 0.095 0.113 0.113

Linezolid –0.237 –0.108 0.129 0.050 0.287 –0.123 0.114

Meropenem –0.523 –0.816 –0.293 –0.941 –0.418 –0.774 –0.251

Methicillin –0.495 –0.619 –0.124 –0.663 –0.168 –0.662 –0.167

Metronidazole –0.398 –0.275 0.123 –0.312 0.086 –0.285 0.113

Minocycline 0.204 0.051 –0.153 0.140 –0.064 0.030 –0.174

Moxifloxacin 0.146 0.228 0.082 0.192 0.046 0.256 0.110

Nafcillin –0.658 –0.614 0.044 –0.661 –0.003 –0.688 –0.030

Netilmicin –1.137 –0.626 0.511 –0.530 0.607 –0.656 0.481

Nitrofurantoin –0.244 –0.192 0.052 –0.213 0.031 –0.147 0.097

Ofloxacin 0.204 0.265 0.061 0.226 0.022 0.197 –0.007

Oseltamivir acid –0.432 –0.386 0.046 –0.361 0.071 –0.396 0.036

Oxacillin –0.721 –0.581 0.140 –0.685 0.036 –0.727 –0.006

Oxytetracycline 0.230 –0.079 –0.309 0.079 –0.151 –0.036 –0.266

Panipenem –0.721 –0.476 0.245 –0.579 0.142 –0.608 0.113

Pefloxacin 0.176 0.330 0.154 0.300 0.124 0.065 –0.111

Penicillin G –0.620 –0.726 –0.106 –0.729 –0.109 –0.730 –0.110
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Phenethicillin –0.523 –0.641 –0.118 –0.642 –0.119 –0.634 –0.111

Piperacillin –0.569 –0.786 –0.217 –0.752 –0.183 –0.721 –0.152

Ribostamycin –0.602 –0.514 0.088 –0.445 0.157 –0.490 0.112

Rifampin –0.013 0.439 0.452 0.336 0.349 0.097 0.11

Saquinavir 0.556 0.239 –0.317 0.144 –0.412 0.189 –0.367

Sparfloxacin 0.591 0.221 –0.370 0.150 –0.441 0.481 –0.110

Spectinomycin –0.886 –0.470 0.416 –0.347 0.539 –0.461 0.425

Stavudine –0.174 –0.216 –0.042 –0.156 0.018 –0.191 –0.017

Streptomycin –0.469 –0.687 –0.218 –0.567 –0.098 –0.696 –0.227

Sulbactam –0.495 –0.579 –0.084 –0.648 –0.153 –0.395 0.100

Sulbenicillin –0.824 –0.754 0.070 –0.743 0.081 –0.734 0.090

Sulfadiazine –0.538 –0.325 0.213 –0.379 0.159 –0.354 0.184

Sulfamethoxazole –0.523 –0.257 0.266 –0.311 0.212 –0.266 0.257

Sulfisoxazole –0.770 –0.270 0.500 –0.351 0.419 –0.282 0.488

Telithromycin 0.477 0.345 –0.132 0.513 0.036 0.588 0.111

Tenofovir –0.081 –0.234 –0.153 –0.239 –0.158 –0.199 –0.118

Tetracycline 0.079 –0.049 –0.128 0.084 0.005 –0.035 –0.114

Ticarcillin –0.796 –0.614 0.182 –0.715 0.081 –0.713 0.083

Tinidazole –0.229 –0.259 –0.030 –0.286 –0.057 –0.258 –0.029

Tobramycin –0.638 –0.690 –0.052 –0.622 0.016 –0.700 –0.062

Tomopenem –0.638 –0.581 0.057 –0.708 –0.070 –0.589 0.049

Trospectomycin –0.155 –0.496 –0.341 –0.448 –0.293 –0.519 –0.364

Trovafloxacin 0.114 0.312 0.198 0.183 0.069 0.228 0.114

Zalcitabine –0.268 –0.259 0.009 –0.186 0.082 –0.231 0.037

Zanamivir –0.638 –0.376 0.262 –0.303 0.335 –0.336 0.302

Zidovudine 0.255 –0.364 –0.619 –0.332 –0.587 –0.357 –0.612

Test data

Acyclovir –0.149 –0.203 –0.054 –0.168 –0.019 –0.170 –0.021

Azlocillin –0.585 –0.599 –0.014 –0.664 –0.079 –0.692 –0.107

Aztreonam –0.745 –0.775 –0.030 –0.788 –0.043 –0.795 –0.050

Carbenicillin –0.770 –0.742 0.028 –0.761 0.009 –0.779 –0.009

Cefadroxil –0.638 –0.796 –0.158 –0.651 –0.013 –0.551 0.087

Cefetamet –0.553 –0.805 –0.252 –0.817 –0.264 –0.808 –0.255

Cefmetazole –0.886 –0.847 0.039 –0.947 –0.061 –0.768 0.118

Cefpirome –0.620 –0.754 –0.134 –0.773 –0.153 –0.789 –0.169

Ceftazidime –0.509 –0.759 –0.250 –0.749 –0.240 –0.751 –0.242

Cefuroxime –0.824 –0.770 0.054 –0.798 0.026 –0.81 0.014

Cephradine –0.678 –0.843 –0.165 –0.866 –0.188 –0.815 –0.137

Chloramphenicol –0.027 –0.257 –0.230 –0.230 –0.203 –0.219 –0.192

Gatifloxacin 0.230 0.226 –0.004 0.150 –0.080 0.496 0.266



The total number of aromatic (nArNR2) and aliphatic (nRNR2) amino groups pres-
ent in the molecule has a positive influence on log Vd values of anti-infective drugs. In-
corporation of a basic centre in a molecule will increase the volume of distribution. This
is because the basic drugs are ionized at physiological pH due to ion-pair interactions
between the basic centre and the charged acidic head groups of phospholipid membra-
nes resulting in high affinity. An example is the introduction of a second basic centre
into the macrolide aglycone ring in azithromycin, which results in a dramatic increase in
the volume of distribution of 33 L kg–1 (log Vd = 1.519) compared to the macrolide anti-
biotic erythromycin with 0.95 L kg–1 (log Vd = –0.022) (Fig. 2).

Finally, the number of beta-lactam rings present in the molecules is also an impor-
tant variable determining the Vd values of anti-infective. This specific molecular feature
indicates the low volume of distribution of compounds containing such structures.
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Genaconazole –0.208 –0.178 0.030 –0.166 0.042 –0.135 0.073

Gentamicin –0.481 –0.231 0.250 –0.126 0.355 –0.132 0.349

Isoniazide –0.086 –0.366 –0.280 –0.378 –0.292 –0.393 –0.307

Mezlocillin –1.046 –0.550 0.496 –0.671 0.375 –0.746 0.300

Nevirapine 0.114 0.290 0.176 0.142 0.028 0.082 –0.032

Penciclovir 0.041 –0.102 –0.143 –0.087 –0.128 –0.101 –0.142

Phenoxyme-
thylpenicillin

–0.387 –0.603 –0.216 –0.640 –0.253 –0.648 –0.261

Rolitetracycline –0.268 0.146 0.414 0.149 0.417 0.177 0.445

Sisomicin –0.721 –0.663 0.058 –0.580 0.141 –0.690 0.031

Sitafloxacin 0.176 0.201 0.025 0.147 –0.029 0.432 0.256

Tigecycline 1.079 0.231 –0.848 0.200 –0.879 0.323 –0.756

Voriconazole 0.342 –0.232 –0.574 –0.273 –0.615 –0.226 –0.568

AzithromycinErythromycin

Fig. 2. Structures of antibiotics erythromycin (nNR2 = 1) and azithromycin (nNR2 = 2).



ANN models

The initial architecture of ANN was five neurons in the input layer and three neu-
rons in the hidden layer selected by the auto build function and one output neuron. In-
put neurons correspond to the five selected descriptors nNR2, PJI2, Mor23v, Mor28e and
nBlct. A sigmoid transfer function was used in all layers. The ideal value of learning rate
h and momentum m was determined by varying their values from 0.01 to 1.0 and the
combination of h = 0.21 and m = 0.61, which gives the lowest RMSE, was selected. Opti-
mization was done with 10-fold cross validation and 20 % of data used for validation.
The learning time or number of epoch selected was 628. With the above selected parame-
ters, the number of neurons in the hidden layer was optimized by varying from 1 to 10
and the ANN model with three hidden neurons gave the best performance. When the
entire training data was trained in the network with the architecture of 5-3-1 and opti-
mized parameters, it gave R2 = 0.808, RMSE = 0.207 and MAE = 0.155. The plot of the ex-
perimental and predicted value of log Vd of the training data using the ANN model is
shown in Fig. 1b.

Using the trained network, the test set was used for prediction and gave R2 = 0.671,
RMSE = 0.284 and MAE = 0.197. The predicted values of log Vd of the training and test
data are given in Table IV.

SVM models

Optimization of SVM parameters was performed by systemically varying the para-
meter values in the training step using 10-fold cross validation and calculating the RMSE
of the model. The parameter value that gave the lowest RMSE was selected. To make the
learning process stable, a high value should be initially set up for C. We initially kept the
value of C as 100 and optimized kernel parameter g and tube size e. The regularization
parameter C controls the trade off between maximizing the margin and minimizing the
training error. If the value of C is too low, then insufficient stress will be placed on the
fitting of training data.

The RBF kernel parameter g controls the amplitude of the Gaussian function and
further affects the generalization ability of SVM. To obtain the optimal g, the support
vector learning machines were trained with g values varying from 0.01 to 0.5. The opti-
mum value was selected as 0.3, which gave the lowest RMSE. Parameter e of e-insensi-
tive loss function is referred to as the tube size and is defined as the approximation accu-
racy placed on the training data points. The value of e also determines the number of
support vectors. The higher the value, the fewer support vectors are selected.

The optimum value of e was found by varying the value 0.01 to 0.2 and the value
0.04 gave the lowest RMSE. After finding the values of e and g, the C value was further
optimized as 105. The selected parameters (g = 0.3, e = 0.04, C = 105) were used for the fi-
nal training run on the training set and predicted the log Vd values. The plot of pre-
dicted vs. experimental log Vd based on this model is shown in Fig. 1c and the values are
shown in Table IV. The statistical parameters of this model are RMSE = 0.191, R2 = 0.835
and MAE = 0.145 for the training set.

This SVM model is used to predict log Vd values of the test data set and the values are
given in Table IV. The prediction statistics is RMSE = 0.273, R2 = 0.683, and MAE = 0.207.
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Comparison of MLR, ANN and SVM models

A summary of the performance of these three models is shown in Table V. Judging
by R2, RMSE and MAE, the SVM method gave the best performance for the training data
set used in the present study. This model gave the highest R2 and lowest error compared
to other models. The training set prediction involved 1.46 average fold errors. A predic-
ted method with an AFE � 2 (i.e., between 0.5 and 2.0) was considered successful for
pharmacokinetic parameters (18). For the SVM model, the percentage of compounds with
2-fold error was 87 compared to 86 and 79 for ANN and MLR models. These statistic re-
sults indicate the good predictive power of this method, especially considering the error
margin for pharmacokinetic data.

Analysis of the training set fit results would suggest that the SVM models will pre-
dict log Vd more effectively than MLR and ANN models on account of their higher R2

and lower error values. However, this can only be proven after conducting rigorous cross
validation procedures.

The model predictivity was assessed by five different statistical parameters for the
external test set of 25 compounds and the results are shown in Table VI. All the models
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Table V. Comparison between MLR, ANN and SVM models using the training dataseta

Statistics MLR ANN SVM

R2 0.740 0.808 0.835

RMSE 0.239 0.207 0.191

MAE 0.181 0.155 0.145

AFE 1.648 1.514 1.466

a N = 101.

Table VI. Predictivity of the external test seta

Statistics MLR ANN SVM

R2 0.671 0.671 0.683

R2– R0
2
/R2 0.017 0.028 0.002

R2–R0
2' /R2 0.220 0.280 0.103

R R0
2

0
2� '

0.136 0.169 0.069

K 0.910 0.899 0.895

K’ 0.846 0.851 0.877

Rm(test)
2 0.599 0.579 0.659

AFE 1.80 1.82 1.785

RMSE 0.280 0.284 0.273

MAE 0.197 0.197 0.207

a N = 25.



show good and acceptable external predictive power and satisfy the following conditions
for the external test set: R2 > 5, R2– R0

2/R2 or R2 – R0
2' /R2 =< 0.1, and K or K’ within

0.85–1.15, R R0
2

0
2� ' < 0.3, and Rm(test)

2 > 0.5.
Examination of the results of RMSE, AFE and MAE values in prediction of the inde-

pendent test set shows that all the models have similar predictive power.
The AFE of the test set is less than 2 for all models; it is 1.78 for the SVM model,

while 1.82 and 1.80 for ANN and MLR models, respectively.

CONCLUSIONS

Prediction of the volume of distribution of new chemical entities in humans is im-
portant in drug discovery and development. Use of predictive QSPkR modeling approa-
ches may allow one to select drug candidates with desired pharmacokinetic properties.
The Vd is a key pharmacokinetic parameter in determining the dosing regimen. Anti-in-
fective agents from J group of ATC classification need to demonstrate adequate phar-
macokinetic behaviour, permitting convenient dosing regimens that result in high pa-
tient compliance and thus effective therapy. We have demonstrated the feasibility of con-
structing QSPkR models using MLR, ANN and SVM methods for prediction of human
Vd of 126 anti-infective agents with diverse chemical structures. We developed models
and estimated the Vd values using five descriptors selected using the CFS method from
a large pool of descriptors. The present study identified and provided some key chemi-
cal structural factors that effect Vd of anti-infective agents. The number of aromatic and
aliphatic tertiary amino groups present in the molecule increases the Vd values of anti-
-infective drugs. The van der Waals volume and Sanderson electronegativities represent-
ing the 3D Morse descriptor, 2D shape of the molecules and the presence of beta-lactam
ring system have a negative influence on the volume of distribution. Models proposed
here satisfy all the rigorous criteria adopted for validation. All of the developed models
show enhanced prediction capability. The results indicate that the SVM model could be
useful for predicting the log Vd value.

Supporting information are available in electronic version of the article.
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S A @ E T A K

Kvantitativni odnos strukture i farmakokineti~kih parametara
(QSPkR) volumena distribucije antiinfektivnih lijekova

BRUNO LOUIS i VIJAY K. AGRAWAL

U radu je odre|en kvantitativni odnos strukture i farmakokineti~kih parametara
(QSPkR) za volumen distribucije (Vd) 126 antiinfektivnih lijekova u ljudi koriste}i vi{e-
struku linearnu regresiju (MLR), umjetne neuronske mre`e (ANN), regresiju potpornim
vektorima (SVM) i teorijske molekulske deskriptore. Selekcija na temelju korelacije (CFS)
upotrjebljena je za izbor relevantnih deskriptora za modeliranje. Rezultati su pokazali
da su glavni faktori koji utje~u na Vd antiinfektivnih lijekova 3D molekulski prikaz van
der Waalsovih volumena atoma i Sandersonove elektronegativnosti, broj alifatskih i aro-
matskih skupina, broj beta-laktamskih prstena i topolo{ki 2D oblik molekule. Prediktiv-
nost modela procijenjena je vanjskom validacijom, koriste}i razli~ite statisti~ke testove.
SVM model pokazao se boljim od ostalih modela. Razvijeni model mo`e se upotrijebiti
za predvi|anje vrijednosti Vd antiinfektivnih lijekova.

Klju~ne rije~i: QSPkR, QSPR, odnos strukture i farmakokineti~kih parametara, volumen distribucije,
ANN, SVM, CFS
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