
61

Acta Pharm. 68 (2018) 61–73 Original research paper
https://doi.org/10.2478/acph-2018-0008

Advanced spectrophotometric chemometric methods 
for resolving the binary mixture of doxylamine succinate 

and pyridoxine hydrochloride

The prediction power of partial least squares (PLS) and 
multivariate curve resolution-alternating least squares 
(MCR-ALS) methods have been studied for simultane-
ous quantitative analysis of the binary drug combina-
tion – doxylamine succinate and pyridoxine hydrochlo-
ride. Analysis of first-order UV overlapped spectra was 
performed using different PLS models – classical PLS1 
and PLS2 as well as partial robust M-regression (PRM). 
These linear models were compared to MCR-ALS with 
equality and correlation constraints (MCR-ALS-CC). 
All techniques operated within the full spectral region 
and extracted maximum information for the drugs ana-
lysed. The developed chemometric methods were vali-
dated on external sample sets and were applied to the 
analyses of pharmaceutical formulations. The obtained 
statistical parameters were satisfactory for calibration 
and validation sets. All developed methods can be suc-
cessfully applied for simultaneous spectrophotometric 
determination of doxylamine and pyridoxine both in 
laboratory-prepared mixtures and commercial dosage 
forms.

Keywords: doxylamine succinate, pyridoxine hydro chlo-
ride, binary mixture, partial least squares (PLS), partial 
robust M-regression (PRM), multivariate curve resolu-
tion -alternative least squares (MCR-ALS)

Analytical separation techniques for simultaneous determination of drugs have 
gained popularity in the last few years due to the intensive development of fixed-dose 
combination drug products (FDCs). One of the latest FDCs on the pharmaceutical market, 
approved in 2013 by the US Food and Drug Administration (FDA), is the combination of 
doxylamine succinate and pyridoxine hydrochloride (1).
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Doxylamine succinate (DOX) (Fig. 1) is a first-generation antihistaminic with antimus-
carinic action and sedative effect. Pyridoxine hydrochloride (PYR) is a water soluble vita-
min involved in different biochemical reactions in the body. The DOX and PYR combina-
tion has recently gained great interest because it is currently one of the few medicines on 
the pharmaceutical market that have been clinically proven to be effective and safe for the 
treatment of nausea and vomiting during pregnancy (2).

Nowadays, spectrophotometric analytical methods combined with powerful signal 
processing algorithms have been applied for quantitative determination of drugs in many 
pharmaceutical formulations. Partial least squares (PLS1, PLS2) (3) and advanced partial 
robust M-regression (PRM), which do not require outlier detection (4), have attracted the 
attention of pharmaceutical analysts owing to their superb performance in multicompo-
nent analysis. Multivariate curve resolution-alternating least squares with a correlation 
constraint (MCR-ALS-CC) is another chemometric technique that has enabled successful 
quantification of spectrally-overlapping drugs (5, 6). Common PLS models require not only 
standards but also possible interferences in a dosage form to be known. However, this is 
not necessary when using MCR-ALS, which has the advantage of analysing pharmaceuti-
cal formulations with unknown excipients (7).

 Official pharmacopeial methods are available for the determination of DOX and PYR 
individually (8), but only few analytical methods have been developed for simultaneous 
evaluation of the drugs in common dosage forms. Separation-based methods such as re-
versed-phase high-performance liquid chromatography (RP-HPLC) and high-perfor-
mance thin-layer chromatography (HPTLC) have been reported for DOX and PYR quanti-
fication (9, 10). Graphical derivative spectrophotometric techniques, including derivative 
ratio zero-crossing and double divisor derivative ratio spectra methods, have been applied 
for ternary mixtures containing DOX and PYR (11). Spectrophotometric determination of 
the two drugs at acidic pH has been reported (12). However, at neutral pH, intense spectral 
overlapping of these drugs is observed, which makes their simultaneous determination 
more complicated. In such media, only the first-derivative zero-crossing method has been 
used with limited applicability for the current system (13). Multivariate calibration tech-
niques – classical least squares (CLS), inverse least squares (ILS), principal components 
regression (PCR) and PLS – have been applied for analysing only ternary mixtures con-
taining DOX and PYR in combination with folic acid (14).

Quantitative analysis of DOX is additionally hindered due to the intense overlapping 
of its spectrum between 240 and 280 nm, with the signal of the tautomeric form of PYR 
predominant at neutral pH. In such a case, the application of CLS and ILS may be limited. 
However, other advanced multivariate techniques such as PLS, PRM and MCR-ALS should 
give better results. In fact, both CLS and ILS are not factor-based methods and hence in-
tense spectral overlapping and high collinearity in spectral data would retard the applica-

Fig. 1. Chemical structures of doxylamine succinate (DOX) and pyridoxine hydrochloride (PYR).
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tion of such models. However, PCR, PLS and MCR-ALS methods are factor-based models 
and hence they can handle spectral overlapping and high collinearity by adjusting a num-
ber of factors to end up with accurate prediction of both drugs in solution.

The aim of the current work is to assess the performance of some advanced chemo-
metric techniques to eliminate the intense spectral overlapping between DOX and PYR at 
neutral pH prior to their quantification. To the best of our knowledge, this is the first study 
applying PLS1, PLS2, PRM and MCR-ALS for simultaneous spectrophotometric determi-
nation of DOX and PYR, both in artificial mixtures and in pharmaceutical dosage forms. 
The developed models can be used in the pharmaceutical practice to analyse this drug 
combination in nasal, pulmonary or buccal formulations, which release the incorporated 
drugs at neutral pH.

EXPERIMENTAL

Apparatus

A UV-visible spectrophotometer Evolution 300 (Thermo Fisher Scientific, USA) was 
used to record the absorption spectra of all solutions. Scanning was carried out in the 
range of 200–400 nm at 1.0-nm intervals with 1.00-cm quartz cells. VISIONpro TM software 
(Thermo Fisher Scientific) was utilized for data acquisition.

Materials

Doxylamine succinate and pyridoxine hydrochloride were purchased from Sigma Al-
drich, USA. Commercial dosage forms – hard modified-release capsules, each containing 
10 mg of DOX and 10 mg of PYR – were purchased from the pharmaceutical market under 
the brand name Cariban® (Laboratorios Inibsa, S.A., Spain). Phosphate-buffered saline 
(PBS) of pH 6.8 was freshly prepared according to the European Pharmacopoeia (8) and 
was used as  solvent for all the prepared stock and working solutions.

Preparation of DOX and PYR standard solutions

Accurately weighed 20 mg of DOX was transferred into a volumetric flask of 200 mL 
and dissolved in PBS, pH 6.8. The solution was sonicated for 15 min at room temperature 
and the content was completed to the mark with PBS. In this way, a stock solution of DOX 
with a concentration of 100 µg mL–1 was prepared. The same procedure was applied to 
obtain a stock solution of PYR with a concentration of 100 µg mL–1. Stock solutions of DOX 
and PYR were stored at 25 ± 0.5 °C until analysis. All working solutions were prepared 
from the stock solutions after appropriate dilutions.

Preparation of dosage form solutions

Twenty Cariban® capsules were emptied and their content was weighed. Capsule con-
tents were mixed in a mortar and ground to a fine powder. An accurately weighed amount 
of the mixed powder (equivalent to 10 mg of DOX and 10 mg of PYR) was transferred into 
150 mL of PBS (pH 6.8), sonicated for 15 min and then made up to 200 mL with PBS in a 
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volumetric flask. A stock solution with a concentration of 50 µg mL–1 for DOX and 50 µg mL–1 
for PYR was thus prepared and filtered using a 0.45 µm syringe filter. After appropriate 
dilution, a working solution with a concentration of 30 µg mL–1 for DOX and 30 µg mL–1 for 
PYR was prepared and scanned over the spectral range between 230 and 400 nm.

Experimental design

A calibration set of mixtures was constructed with the aid of Chemoface statistical 
software using a central composite design (CCD), as shown in Table I (15). It comprised 11 
mixtures containing different concentrations of DOX and PYR in the concentration range 
of 30–90 µg mL–1 for DOX and 10–30 µg mL–1 for PYR. Another 8 mixtures were used as a 
validation set to test the predictive power of the developed chemometric models.

Multivariate calibration techniques

The analytical performance of classical PLS models (PLS1 and PLS2) (16) was com-
pared to the linear PRM model (17). PLS is an inverse calibration procedure for developing 
a quantitative relationship between several predictor variables X (spectra) and dependent 
variables C (concentration) according to the equation:

 ( ) ( ) ( )n s n k k sC X B× × ×= ×

where C is the matrix sized n × s, n is the number of samples, s is the number of compo-
nents, X is the n × k centred data matrix containing the absorbances of standard solutions 
measured at k wavelengths, and B is the k × s regression coefficient matrix. When only one 

Table I. Experimental design of the calibration and validation set mixtures

Calibration seta Validation seta

Mixture DOX PYR Mixture DOX PYR

1 30.0 15.0 1 30.0 10.0

2 30.0 25.0 2 40.0 10.0

3 80.0 15.0 3 30.0 15.0

4 80.0 25.0 4 30.0 20.0

5 20.0 20.0 5 30.0 30.0

6 90.0 20.0 6 40.0 15.0

7 55.0 13.0 7 40.0 20.0

8 55.0 27.0 8 50.0 10.0

9 55.0 20.0

10 55.0 20.0

11 55.0 20.0

a Concentrations of mixture components in µg mL–1.
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drug component is considered (s = 1), the PLS method is called PLS1. For s >1, it is known 
as PLS2.

MCR-ALS optimization algorithm was also tested (18–21). MCR is based on a bilinear 
additive model, which can be expressed by the following equation:

 TX C S E= × +

where X is the spectral data matrix of (n + m) × k , C is the concentration profile of all com-
ponents and ST is the matrix of the corresponding pure spectra. Matrix E contains the 
unmodelled part of the data, which is not explained by the bilinear model.

Information about singular value decomposition (SVD), non-negativity, equality and 
correlation constraints is given in the literature (5, 19–22).

Assessment of multivariate calibration methods for drug quantification. – Root mean square 
errors of calibration (RMSEC), root mean square errors of prediction (RMSEP), relative 
error of prediction (RE) and squared correlation coefficients (R2) were estimated using the 
equations:
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where Cpred,i and Ctrue,i are predicted and true concentrations of each component in sample 
i, resp., and Ĉtrue is the average true concentration. n and m are the number of samples in 
calibration and prediction sets, resp. RMSEC characterizes the quality of calibration models, 
while RMSEP and RE values not only assess the quality of prediction but also help select 
the optimal number of latent variables (LVs). The squared correlation coefficient (R2), mea-
suring how much variance of concentration is explained by the absorbance spectra values, 
characterizes model quality and helps compare the developed methods.

Lack of fit (LOF) values and percent of variance were used for assessment of the MCR-
ALS method. These statistical parameters were calculated as follows:
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where dij and d*
ij are the experimental and MCR–ALS-predicted absorbance values, resp.
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Chemometric software

All spectra were converted to digital values and exported to MatLab for subsequent 
calculation. Numerical calculations were made using MatLab®2013a (Mathworks, Natick, 
MA, USA). PLS2 calibration was carried out using the MVC1® MatLab toolbox (23), while 
the TOMCAT® MatLab toolbox (24) was used to run PLS1 and RPM. MCR-ALS routines 
were performed using multivariate curve resolution-alternating least squares subroutines 
(25). All programs were available on the internet.

RESULTS AND DISCUSSION

 Series of spectral tests were carried out to evaluate the influence of pH on the spectral 
behaviour of DOX and PYR. Due to tautomeric equilibrium, the UV-spectrum of PYR was 
strongly dependent on pH (26). At acidic pH, N-protonation of PYR took place and an ab-
sorption maximum was observed at 290 nm. However, at neutral pH, the zwitterionic form 
of PYR prevailed and, besides the absorption maximum at 324 nm, a new maximum ap-
peared at 254 nm. The UV spectra of DOX and PYR at pH 6.8 are represented in Fig. 2.

At neutral pH (6.8), the drugs exhibited intense spectral overlapping over the range 
between 200 and 400 nm. DOX showed one suitable wavelength for quantitative analysis 
at 260 nm, while PYR could be quantified at two wavelengths: 254 and 324 nm. As shown 
in Fig. 2, in the region between 240 and 280 nm there was an intense overlap between the 
spectra of the two drugs, which hindered direct determination of DOX. For the current 
system, a high degree (67 %) of spectral overlap between DOX and PYR was estimated (27).

Besides the spectral overlap between the two drugs, a non-linearity test was also car-
ried out to verify the relationship between drug content and PLS-scores, as outlined in the 
literature (28). The results showed a linear relationship between both drugs and PLS-
scores indicating applicability of the linear models (PLS1, PLS2 and PRM) for handling the 
current analytical system.

Fig. 2. Absorption spectra of DOX (55 µg mL−1) and PYR (10 µg mL−1) at pH 6.8.
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PLS models

Three PLS versions (PLS1, PLS2 and PRM) were applied to calibrate the drugs in the 
solution. Wavelength selection was carried out before running PLS calibration. The spec-
tral region from 200 to 230 nm was removed due to strong solvent interference. The re-
maining spectral range 230–400 nm (171 spectral data) was included in numerical analysis 
to calibrate DOX and PYR. The two components had no spectral absorbance at further 
wavelengths. For the PLS methods, the spectral data were placed in three different matri-
ces: the main calibration matrix X (11 × 171), a validation matrix (8 × 171), designed as 
shown in Table I, and a dosage form matrix (5 × 171). Mean centring was chosen as a pre-
processing step in PLS1 and PLS2, while median centring was chosen as a preprocessing 
step in PRM. With PLS1 regression, a model was built for each drug using its concentration 
vector, whereas with PLS2 regression, concentrations of both drugs were used simultane-
ously. The prediction ability of the PLS methods was not satisfactory, which could be at-
tributed to the intense overlapping and the possible existence of outliers. The later draw-
back was eliminated by constructing a robust version of PLS (i.e., PRM), which 
automatically removed outliers before creating the model.

The optimum number of PLS variables was determined by the minimum values of 
RMSEP and RE. Selection of the correct number of components was important to avoid 

Table II. Calibration and validation parameters and figures of merits for DOX and PYR for PLS1, PLS2 and 
RPM methods

Parameter
PLS1 PLS2 RPM

DOX PYR DOX PYR DOX PYR

Calibration
PCs 3 4 4 4 3 4
RMSEC (µg mL–1) 0.3701 0.0879 0.3582 0.0835 0.2987 0.0648
RE (%) 0.6203 0.4283 0.6002 0.4067 0.8084 0.4226
R2 0.9999 0.9998 0.9999 0.9998 0.9998 0.9998
Validation
RMSEP (µg mL–1) 0.4220 0.0886 0.3487 0.0943 0.4200 0.0875
RE (%) 1.1432 0.5063 0.9446 0.5388 1.1379 0.4998
R2 0.9991 0.9999 0.9994 0.9999 0.9987 0.9999
Figures of merit
Sensitivitya 0.0382 0.0494 0.0351 0.0472 0.0408 0.0450
LODb 0.61-0.89 0.25-0.30 0.59-0.91 0.24-0.29 0.60-0.88 0.23-0.29
LOQc 1.83-2.68 0.75-0.91 1.77-2.73 0.72-0.87 1.81-2.59 0.73-0.89

a Sensitivity measures the changes in response as a function of the concentration of a particular analyte (mL µg–1).
b  Limit of detection is the lowest concentration of an analyte that can be detected, but not necessarily quantified 

(µg mL–1).
c  Limit of quantification is the lowest concentration of an analyte that can be quantitatively determined with suit-
able precision and accuracy (µg mL–1).
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model overfitting. As shown in Table II, four latent variables were chosen for both drugs 
in the PLS2 model. For PLS1 and PRM, the optimum number of variables was different: 
three for DOX and four for PYR. As the optimum number of latent variables (3 to 4) was 
higher than the number of components (2 solutes), a serious rank-deficiency in matrices 
was encountered. This was probably caused by the intense spectral overlap. In that case, 
PLS and PRM regression seemed to be the best choice for modelling such data with a multi-
collinearity problem.

The eight synthetic mixtures used to validate calibration models were analysed with 
PLS1, PLS2 and PRM for each drug. The “predicted vs. true” plots were constructed to 
check out the performance of the models. The final statistical parameters are presented in 
Table II. The parameters: RMSEC, RMSEP, RE and R2 provided the basis for comparison 
between the models.

DOX was predicted by the PLS calibration with RMSEC 0.2987–0.3701 µg mL–1, while 
a better prediction of PYR was observed with RMSEC 0.0648–0.0879 µg mL–1. At the same 
time, RE values also indicated better prediction of PYR (0.4067–0.4283 %) compared to DOX 
(0.6002–0.8084 %). The validation statistical parameters for both components have similar 
values for the three PLS models.

In general, statistical parameters for all PLS models of DOX were worse compared to 
PYR. The possible reason was the lack of a selective region in the spectrum of DOX due to 
the intense overlapping with the spectrum of PYR (Fig. 2).

Figures of merit (FOM) – sensitivity, limit of detection (LOD) and limit of quantifica-
tion (LOQ) – were also calculated for the PLS models. LOD and LOQ intervals were pro-
vided instead of single values (29). PYR turned out to have higher sensitivity with lower 
values of LOD and LOQ compared to DOX. This could be attributed to the vast region of 
the PYR spectrum in which it was not overlapped by the DOX spectrum.

MCR-ALS method

For the MCR-ALS method, the calibration matrix (11 × 171) and the validation matrix 
(8 × 171) were disposed in two different column-wise augmented matrices, which were 
used for calibration (22 × 171) and validation (19 × 171). For dosage forms, the calibration 
matrix (11 × 171) and the dosage form matrix (5 × 171) were disposed in a column-wise 
augmented matrix (16 × 171).

SVD was used to decompose the calibration data matrix and two singular values were 
visually inspected. It was assumed that there were two significant factors and no interfer-
ences present in the dosage form samples. Further, the pure spectral profiles of the stan-
dard compounds, DOX and PYR, were used as initial estimates to check the MCR-ALS 
solutions and also to reduce the effects of rotational ambiguities. To test the ability of 
MCR-ALS for internal validation, the calibration data set was used as a second subset to 
perform model validation.

Non-negativity constraint was used in order to ensure that the concentrations and the 
spectra of the components had positive values. Two other constraints were applied during 
the ALS optimization procedure. Initially, the MCR-ALS model was tested with known 
pure spectral profiles (equality constraint). Afterwards, the correlation constraint was 
used to eliminate the dosage form matrix effects. The correlation constraint gave better 
spectral profiles than the equality one. The profiles of both drugs generated by MCR-ALS-
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CC are represented in Fig. 3. The spectral profile values were tested for each component by 
calculating their correlation with the pure spectrum of the drugs and excellent results 
were obtained: 0.9933 and 0.9983 for DOX and PYR, resp.

Table III. Calibration and validation parameters for DOX and PYR for MCR-ALS and MCR-ALS-CC 
methods

Parameter
MCR-ALS MCR-ALS-CC

DOX PYR DOX PYR

Calibration
PCs 2 2 2 2
Number of iterations 15 12 4 3
LOF (%) (PCA) 0.3712 0.5357 0.3715 0.5497
LOF (%) (exp.) 0.7855 0.8753 0.7856 0.8840
Variance (%) 99.9938 99.9923 99.9938 99.9922
RMSEC (µg mL–1) 0.6117 0.2117 0.6106 0.2088
RE (%)
R2

1.0251
0.9997

1.0312
0.9990

1.0233
0.9997

1.0170
0.9990

Validation
Number of iterations 7 6 4 3
LOF (%) (PCA) 0.4702 0.7071 0.4697 0.6945
LOF (%) (exp.) 0.8215 0.9766 0.8213 0.9676
Variance (%) 99.9933 99.9905 99.9933 99.9906
RMSEP (µg mL–1) 0.4553 0.2065 0.4507 0.1809
RE (%) 1.2335 1.1800 1.2210 1.0335
R2 0.9987 0.9998 0.9987 0.9998

Fig. 3. Spectral profiles of the two analytes – normalized true (-) and estimated using MCR-ALS (--): 
a) DOX (55 µg mL−1), b) PYR (10 µg mL−1).

a)                                                                              b)
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The calculated statistical parameters of calibration and validation for MCR-ALS and 
MCR-ALS-CC are listed in Table III.

As shown, the values of LOF and percent of variance were comparable when both con-
straints (equality and correlation) were applied. On the other hand, convergence was 
achieved by different numbers of iterations. Applying the correlation constraint reduced the 
number of iterations for DOX and PYR. All parameters (RMSEC, RMSEP and RE) for both 
drugs indicated that correlation was more convenient than the equality constraint for final 
prediction, making MCR-ALS-CC the better model. The obtained results indicated that the 
prediction ability of MCR-ALS methods was better for PYR compared to DOX, which was 
also observed with the PLS models. In general, the analytical and statistical parameters 

Table IV. Results of the validation test set prediction using PLS1, PLS2, RPM and MCR-ALS-CC methods

Mixture PLS1 PLS2

DOX PYR DOX PYR DOX PYR

True (µg mL–1) Recovery (%) Recovery (%)

30.0 10.0 100.66 98.73 100.54 99.30

40.0 10.0 101.50 100.29 101.15 100.86

30.0 15.0 101.33 99.84 100.86 100.44

30.0 20.0 99.33 100.90 99.44 100.61

30.0 30.0 99.33 100.19 99.19 100.01

40.0 15.0 101.50 100.04 101.21 100.71

40.0 20.0 99.25 100.09 99.40 99.94

50.0 10.0 101.40 100.99 101.07 101.6

Mean (%) 100.54 100.13 100.36 100.44

SD 1.06 0.70 0.87 0.71

Mixtures RPM MCR-ALS-CC

DOX PYR DOX PYR DOX PYR

True (µg mL–1) Recovery (%) Recovery (%)

30.0 10.0 100.45 99.20 100.23 99.53

40.0 10.0 101.15 100.64 101.17 102.32

30.0 15.0 101.12 100.30 101.72 101.44

30.0 20.0 98.83 100.71 99.22 100.13

30.0 30.0 98.53 100.05 99.43 100.31

40.0 15.0 101.22 100.57 101.76 101.41

40.0 20.0 98.77 99.99 98.94 99.69

50.10 10.0 101.04 101.46 101.22 103.18

Mean (%) 100.14 100.37 100.46 101.00

SD 1.21 0.66 1.15 1.31
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provided in Tables II and III confirmed that DOX could be analysed by both methods (PLS 
and MCR-ALS); however, PLS methods were more effective for PYR prediction.

Among the studied methods, PLS and PRM showed the best predictive ability for the 
analysis of DOX and PYR binary mixtures. In spite of that, the developed MCR-ALS methods 
had the advantage of predicting pure spectral profiles of the drugs and also the influence 
of interfering components in dosage forms.

After parameter optimization and the calibration step, the models were successfully 
applied to the estimation of DOX and PYR in the validation set. The mean recovery and 
standard deviation values are summarized in Table IV. The obtained results indicated a high 
predictive ability of all developed methods for drug quantification in the validation set.

Analysis of commercial dosage forms

The proposed PLS and MCR-ALS-CC methods were applied to simultaneous deter-
mination of DOX and PYR in commercial Cariban® capsules. The obtained statistical pa-
rameters are given in Table V.

All methods proved to be reasonable analytical procedures to quantify both DOX and 
PYR in pharmaceutical formulations, with excellent recoveries of 98.43–102.34 %. Better 
performance of MCR-ALS for drug quantification in dosage forms was probably due to the 
ability of the method to handle the negative contribution of the un-calibrated excipients in 
the formulation, which were not included in calibration samples.

CONCLUSIONS

The adopted multivariate methods showed similar performance for doxylamine and 
pyridoxine determination in binary mixtures. The predictive ability of PLS1 was compa-
rable to that of PLS2 and PRM. However, a robust PRM algorithm demonstrated superiority 
over the other two PLS versions due to the initial detection and removal of outliers before 
calibration. MCR-ALS-CC gave the best output for drug quantification in dosage forms. All 
of the developed calibration procedures proved to be reliable methods for analyses of 
doxylamine and pyridoxine in pharmaceutical formulations. 

Acronyms, abbreviations, symbols. – CCD – central composite design, CLS – classical least squares, 
DOX – doxylamine succinate, FDCs – fixed-dose combination drug products, FOM – figures of merit, 
HPTLC – high-performance thin-layer chromatography, ILS – inverse least squares, LOD – limit of 
detection, LOF – lack of fit, LOQ – limit of quantification, LVs – latent variables, MCR-ALS – multi-

Table V. Recovery obtained by PLS1, PLS2, RPM and MCR-ALS-CC methods for assaying Cariban® 
capsules

Parameter
PLS1 PLS2 RPM MCR-ALS-CC

DOX PYR DOX PYR DOX PYR DOX PYR

Recovery (%) 98.43 101.76 100.08 102.34 98.55 101.45 100.79 99.18

SD 1.44 1.38 1.37 1.19 1.29 1.08 0.72 0.69
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variate curve resolution-alternating least squares, MCR-ALS-CC – multivariate curve resolution-al-
ternating least squares with correlation constraint, PBS – phosphate-buffered saline, PCA – principal 
component analysis, PCR – principal components regression, PCs – principal components, PLS – par-
tial least squares, PRM – partial robust M-regression, PYR – pyridoxine hydrochloride, R2 – squared 
correlation coefficient, RE – relative error of prediction, RMSEC – root mean square errors of calibra-
tion, RMSEP – root mean square errors of prediction, RP-HPLC – reversed-phase high-performance 
liquid chromatography, SVD – singular value decomposition 
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