Acta Pharm. **66** (2016) 83–95 DOI: 10.1515/acph-2016-0004

# Simultaneous quantitative analysis of olmesartan, amlodipine and hydrochlorothiazide in their combined dosage form utilizing classical and alternating least squares based chemometric methods

HANY W. DARWISH<sup>1, 2\*</sup> AHMED H. BAKHEIT<sup>1</sup> ALI S. ABDELHAMEED<sup>1</sup>

<sup>1</sup> Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University, P.O. Box 2457 Riyadh 11451, Saudi Arabia

<sup>2</sup> Department of Analytical Chemistry Faculty of Pharmacy, Cairo University Cairo, Egypt

Accepted September 23, 2015 Online published January 8, 2016 Simultaneous spectrophotometric analysis of a multi-component dosage form of olmesartan, amlodipine and hydrochlorothiazide used for the treatment of hypertension has been carried out using various chemometric methods. Multivariate calibration methods include classical least squares (CLS) executed by net analyte processing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS) in addition to multivariate curve resolution-alternating least squares (MCR-ALS). Results demonstrated the efficiency of the proposed methods as quantitative tools of analysis as well as their qualitative capability. The three analytes were determined precisely using the aforementioned methods in an external data set and in a dosage form after optimization of experimental conditions. Finally, the efficiency of the models was validated via comparison with the partial least squares (PLS) method in terms of accuracy and precision.

*Keywords*: multivariate calibration methods, olmesartan medoxomil, amlodipine besylate, hydrochlorothiazide, spectrophotometry, pharmaceutical tablets

Despite the wideness of spectrophotometric application in pharmaceutical analysis, lack of selectivity prevents its application to simultaneous determination of components with intensely overlapped absorption bands. Selectivity of spectrophotometric analysis can be improved by applying chemometrics (1). In this study, four chemometric methods were applied for the quantitative analysis of a ternary mixture of antihypertensive drugs. The first method is called multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS has high qualitative properties (providing the pure spectrum of each component) but its application to quantitative pharmaceutical analysis is limited (2–6). The additional three methods are classical least squares (CLS) preceded by net analyte process-

<sup>\*</sup> Correspondence; e-mail: hdarwish75@yahoo.com; hdarwish@ksu.edu.sa

ing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS). These three pre-processing techniques are applied to improve the predictability of the CLS model. This improvement could increase the application of the CLS model in quantitative analysis by taking advantage of its inherent qualitative properties.

The four developed methods were applied to analyze a ternary mixture of olmesartan medoxomil (OLM), amlodipine besylate (AML) and hydrochlorothiazide (HCT). Olmesartan medoxomil (Fig. 1) is a powerful and selective angiotensin AT1 receptor blocker (7), amlodipine besylate is a calcium channel blocker used for the management of hypertension and angina pectoris (8) and hydrochlorothiazide is a benzothiadiazine diuretic that blocks NaCl transport in distal convoluted tubule (9). This ternary mixture (OLM, AML and HCT) is available in the markets as a tablet dosage form (Tribenzor® tablets) in several different dosages. Few methods are available for simultaneous analysis of this ternary mixture. According to extensive literature review, the reported methods for analysis of this mixture include high performance liquid chromatography (HPLC) (10–12), spectrophotometry (13-16) and chemometric methods (16, 17). Chemometric methods that were used for spectrophotometric data in previous work were CLS, PCR and partial least squares (PLS) (17) and artificial neural network (ANN) (16). In the work of Darwish et al. (17) on the same drug mixture the predictability of CLS method was found to be low. This finding motivated us to further extend our work and to investigate the quantitative power of other methods as compared to PLS.

FDA approved Tribenzor<sup>®</sup> tablets in four ratios. All the reported methods were developed for the analysis of only one ratio for this combination (4:1:2.5). Hence, this study was designed to achieve a number of goals. Firstly, to develop simple, robust and accurate chemometric methods for the simultaneous determination of OLM, AML and HCT in Tribenzor<sup>®</sup> tablets in all FDA approved ratios; secondly, to show the quantitative power as well as qualitative power of the proposed methods. Thirdly, to show the effect of different preprocessing procedures, such as NAP, OSC and DOSC, on the performance of CLS in quantitative analysis, since other chemometric approaches designed only for quantitative analysis [*e.g.*, multiple linear regression (MLR) and locally weighted regression (LWR) were not applied in this study].



Olmesartan medoxomil (OML)

Amlodipine besylate (AML) Hydrochlorothiazide (HCT)

Fig. 1. Chemical structures of olmesartan medoxomil (OLM), amlodipine besylate (AML) and hydro-chlorothiazide (HCT).

#### EXPERIMENTAL

### Apparatus

A double-beam UV-visible spectrophotometer (Shimadzu, Japan) model UV-1650 PC, with a quartz cuvette cell of 1-cm path length, was connected to an IBM-compatible computer. The spectral bandwidth was 2 nm and wavelength-scanning speed 2800 nm min<sup>-1</sup>. A UV lamp with a short wavelength (254 nm) was used. All recorded spectra were converted to the ASCII format by the UV-probe personal spectroscopy software version 2.21 (Shimadzu).

# Materials

OLM was acquired from AK Scientific Inc. (USA), HCT from Al-Hekma Pharmaceutical Company (Egypt) and AML was kindly supplied by Pfizer Inc. (USA). The purities of OLM, AML and HCT were 99.5, 99.5 and 99.78 %, respectively. Tribenzor<sup>®</sup> tablet is available in several different strength combinations including, 40/10/25 mg, 40/10/12.5 mg, 40/5/25 mg and 40/5/12.5 mg of OLM, AML base (10 mg or 5 mg of AML base equivalent to 13.9 mg or 6.95 mg of AML besylate) and HCT, respectively. Tribenzor<sup>®</sup> tablets were procured from Daiichi Sankyo Inc., USA). Acetonitrile used throughout this study was of spectroscopic grade (Sigma-Aldrich Chemie GmbH, Germany).

# Preparation of OLM, AML and HCT standard solutions

Stock solutions of OLM (250  $\mu$ g mL<sup>-1</sup>), AML (200  $\mu$ g mL<sup>-1</sup>) and HCT (250  $\mu$ g mL<sup>-1</sup>) were prepared in acetonitrile. All stock solutions were stored at 4 °C until analysis.

# Preparation of pharmaceutical tablet sample solutions

Seven tablets of each Tribenzor<sup>®</sup> formulation were weighed and the average tablet mass was calculated. Tablets were crushed to a fine powder, and a quantity of powdered tablets, equivalent to the mass of one tablet was extracted with 80 mL acetonitrile with the help of sonication for 30 min and diluted up to 100 mL with acetonitrile. The extracts were filtered through a 0.45-µm MF-Millipore membrane filter (composed of mixed cellulose esters) and the first portion of each filtrate was discarded. The filtrates were then diluted with the same solvent and subjected to analysis by the developed method.

# Chemometric procedures and softwares

Principles and theoretical background of the chemometric methods are detailed in the literature for the MCR-ALS method (2, 18, 19), CLS model (20) and different pre-processing techniques (NAP, OSC and DOSC) (21–25).

MCR-ALS, NAP-CLS and OSC-CLS methods were implemented in Matlab<sup>®</sup> 7.1.0.246 (R14) using MCR-ALS (26) and MVC1 toolboxes (27).

Multi-level, multi-factor calibration design (28) was used for construction of 25 mixture samples by transferring different volumes of OLM, AML and HCT from their stan-

| Mix | OLM   | AML | HCT   | Mix | OLM   | AML | HCT   |
|-----|-------|-----|-------|-----|-------|-----|-------|
| 1   | 20.00 | 5   | 12.50 | 14  | 20.00 | 7   | 15.00 |
| 2   | 20.00 | 3   | 10.00 | 15  | 25.00 | 7   | 10.00 |
| 3   | 15.00 | 3   | 15.00 | 16  | 25.00 | 3   | 13.75 |
| 4   | 15.00 | 7   | 11.25 | 17  | 15.00 | 6   | 10.00 |
| 5   | 25.00 | 4   | 15.00 | 18  | 22.50 | 3   | 12.50 |
| 6   | 17.50 | 7   | 12.50 | 19  | 15.00 | 5   | 13.75 |
| 7   | 25.00 | 5   | 11.25 | 20  | 20.00 | 6   | 13.75 |
| 8   | 20.00 | 4   | 11.25 | 21  | 22.50 | 6   | 11.25 |
| 9   | 17.50 | 4   | 13.75 | 22  | 22.50 | 4   | 10.00 |
| 10  | 17.50 | 6   | 15.00 | 23  | 17.50 | 3   | 11.25 |
| 11  | 22.50 | 7   | 13.75 | 24  | 15.00 | 4   | 12.50 |
| 12  | 25.00 | 6   | 12.50 | 25  | 17.50 | 5   | 10.00 |
| 13  | 22.50 | 5   | 15.00 |     |       |     |       |

Table I. The 5-level 3-factor experimental design of the calibration and validation set mixtures<sup>a</sup>

<sup>a</sup> Concentrations of mixture components in µg mL<sup>-1</sup>.

dard stock solutions into 5-mL measuring flasks. Dilution of these solutions was done with acetonitrile and mixed well (Table I). Fifteen of the above-mentioned 25 samples were used to construct chemometric models (calibration set) and 10 samples were used as a validation set to test the predictive power of the developed models. For the different ratios of three analytes in Tribenzor<sup>®</sup> tablets, each analyte concentration range was dependent on the



Fig. 2. Absorption spectra for OLM, AML and HCT against acetonitrile as a blank (10 µg mL<sup>-1</sup> each).



Fig. 3. Score plot for the mean centred 25 samples concentration matrix of the five level three component experimental design. PC 1, 2 – first, second principal component.

calibration range of each analyte in 25 samples. UV spectra of all the 25 samples were obtained from 200 to 400 nm against solvent blank and subject to Matlab for calculations. The noisy region (200–230 nm) and the zero absorbance of OLM and HCT after 340 nm explained the rejection of these parts from the spectra (Fig. 2).

A plot of the 2D scores for the first two PCs of the concentration matrix confirmed the position of the samples in space, orthogonality, rotatability and symmetry (28) as anticipated in Fig. 3. Mean centering of the data showed to be the best pre-processing procedure for getting the best results in case of improved CLS methods.

*Optimization of the number of factors for the NAP-CLS, OSC-CLS and DOSC CLS models.* – Leave-one-out (LOO) CV was used in our study for optimizing the number of factors for building the investigated methods (20), by building the model using the *I*-1 sample set (calibration set consisting of 14 samples) to predict the one sample left (validation sample). The root mean square error of CV (*RMSECV*) was calculated as

$$RMSECV = \sqrt{\frac{1}{I}\sum_{i=1}^{I} \left(c_{i} - \hat{c}_{i\_cv}^{A}\right)^{2}}$$

where *I* is the number of objects in the calibration set,  $c_i$  is the known concentration for sample *i* and  $\hat{c}_{i \text{ cv}}^A$  is the predicted concentration of sample *i* using *A* components. Mean centering was applied on the calibration set each time successive samples were left out.

Root mean square of calibration (*RMSEC*), root mean square of prediction (*RMSEP*) were calculated in the same manner for the calibration and validation set, respectively, according to the following equation

$$RMSECP = \sqrt{\frac{1}{I}\sum_{i=1}^{I} \left(c_{i} - \hat{c}_{i}^{A}\right)^{2}}$$



Fig. 4. Estimated absorption spectra by: a) MCR-ALS and b) true spectra, of OLM, AML and HCT against acetonitrile.

where *I* is the number of samples in the calibration (in case of *RMSEC*) or validation set (in case of *RMSEP*),  $c_i$  is the known concentration for sample *i* and  $\hat{c}_i^A$  is the estimated concentration of sample *i* using *A* components. *RMSEC* gives an idea about the quality of the developed models while *RMSEP* shows the prediction power of the developed models.

#### RESULTS AND DISCUSSION

### MCR-ALS method

MCR-ALS method is supposed to provide an ideal estimation of the concentration and spectra profiles of the three analytes OLM, AML and HCT. First, the model was applied on the calibration set (15 samples). Non-negativity constraint was applied for both concentration and spectral data. The pronounced resemblance between the estimated pure spectra of OLM, AML and HCT and the true ones (Fig. 4) assured the performance of the model to predict pure spectra for the three components in the analyzed mixture. Evolving factor analysis (EFA) was used to predict the concentration profiles of the three components.

Values of the lack of fitness (lof), percent of variance and standard deviation of the residuals with respect to the experimental data were 0.10889, 99.999 % and 0.00089, respectively, at iteration number 13. These values indicate the high quality of the model.

#### Improved CLS models

For proper construction of NAP-CLS, OSC-CLS and DOSC-CLS models, the number of projection matrix factors (NAP-CLS) and the number of extracted factors (OSC-CLS and DOSC-CLS) should be optimized. For this reason, CV was applied where log PRESS (predicted residual error sum of squares) values were calculated. The optimal number of fac-

| Ν                                                                                                                                                  | Metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     | MCR-ALS                                                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                                                                                                     | NAP-CLS                                                                                                                                                                                          |                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OLM                                                                                                                                                | AML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OLM                                                                                                                                                                                 | AML                                                                                                                                                                                             | HCT                                                                                                                                                                                    | OLM                                                                                                                                                                                 | AML                                                                                                                                                                                              | HCT                                                                                                                                                                                     |
| True                                                                                                                                               | e (µg n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nL <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recovery (%)                                                                                                                                                                        | Recovery (%)                                                                                                                                                                                    | Recovery (%)                                                                                                                                                                           | Recovery (%)                                                                                                                                                                        | Recovery (%)                                                                                                                                                                                     | Recovery (%)                                                                                                                                                                            |
| 25                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98.92                                                                                                                                                                               | 99.29                                                                                                                                                                                           | 99.40                                                                                                                                                                                  | 99.32                                                                                                                                                                               | 99.14                                                                                                                                                                                            | 100.20                                                                                                                                                                                  |
| 15                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98.27                                                                                                                                                                               | 100.00                                                                                                                                                                                          | 99.27                                                                                                                                                                                  | 98.33                                                                                                                                                                               | 100.00                                                                                                                                                                                           | 99.20                                                                                                                                                                                   |
| 15                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.20                                                                                                                                                                               | 101.25                                                                                                                                                                                          | 100.72                                                                                                                                                                                 | 98.67                                                                                                                                                                               | 101.25                                                                                                                                                                                           | 100.24                                                                                                                                                                                  |
| 15                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.13                                                                                                                                                                              | 99.20                                                                                                                                                                                           | 100.58                                                                                                                                                                                 | 99.93                                                                                                                                                                               | 99.20                                                                                                                                                                                            | 100.65                                                                                                                                                                                  |
| 15                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.67                                                                                                                                                                              | 99.17                                                                                                                                                                                           | 99.80                                                                                                                                                                                  | 99.47                                                                                                                                                                               | 99.17                                                                                                                                                                                            | 98.70                                                                                                                                                                                   |
| 15                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.13                                                                                                                                                                              | 99.71                                                                                                                                                                                           | 100.36                                                                                                                                                                                 | 99.33                                                                                                                                                                               | 99.57                                                                                                                                                                                            | 99.91                                                                                                                                                                                   |
| 17.5                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.97                                                                                                                                                                              | 101.67                                                                                                                                                                                          | 101.16                                                                                                                                                                                 | 100.69                                                                                                                                                                              | 101.67                                                                                                                                                                                           | 100.44                                                                                                                                                                                  |
| 17.5                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.91                                                                                                                                                                              | 100.57                                                                                                                                                                                          | 101.28                                                                                                                                                                                 | 100.97                                                                                                                                                                              | 100.71                                                                                                                                                                                           | 101.68                                                                                                                                                                                  |
| 17.5                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101.89                                                                                                                                                                              | 99.25                                                                                                                                                                                           | 100.51                                                                                                                                                                                 | 102.17                                                                                                                                                                              | 99.25                                                                                                                                                                                            | 100.73                                                                                                                                                                                  |
| 17.5                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101.83                                                                                                                                                                              | 102.40                                                                                                                                                                                          | 101.30                                                                                                                                                                                 | 101.31                                                                                                                                                                              | 102.20                                                                                                                                                                                           | 100.50                                                                                                                                                                                  |
| 17.5                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.60                                                                                                                                                                               | 98.00                                                                                                                                                                                           | 99.87                                                                                                                                                                                  | 100.11                                                                                                                                                                              | 98.17                                                                                                                                                                                            | 100.53                                                                                                                                                                                  |
| 20                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.70                                                                                                                                                                               | 94.40                                                                                                                                                                                           | 98.08                                                                                                                                                                                  | 100.00                                                                                                                                                                              | 94.40                                                                                                                                                                                            | 98.32                                                                                                                                                                                   |
| 20                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.65                                                                                                                                                                               | 99.33                                                                                                                                                                                           | 100.80                                                                                                                                                                                 | 99.45                                                                                                                                                                               | 99.33                                                                                                                                                                                            | 99.90                                                                                                                                                                                   |
| 20                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101.10                                                                                                                                                                              | 101.00                                                                                                                                                                                          | 100.44                                                                                                                                                                                 | 101.20                                                                                                                                                                              | 100.75                                                                                                                                                                                           | 100.27                                                                                                                                                                                  |
| 20                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98.25                                                                                                                                                                               | 105.33                                                                                                                                                                                          | 97.96                                                                                                                                                                                  | 98.75                                                                                                                                                                               | 105.33                                                                                                                                                                                           | 98.69                                                                                                                                                                                   |
| Ν                                                                                                                                                  | lean (%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.08                                                                                                                                                                              | 100.04                                                                                                                                                                                          | 100.10                                                                                                                                                                                 | 99.98                                                                                                                                                                               | 100.01                                                                                                                                                                                           | 100.00                                                                                                                                                                                  |
|                                                                                                                                                    | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.15                                                                                                                                                                                | 2.36                                                                                                                                                                                            | 1.05                                                                                                                                                                                   | 1.10                                                                                                                                                                                | 2.34                                                                                                                                                                                             | 0.1                                                                                                                                                                                     |
| RMSI                                                                                                                                               | EC (µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2026                                                                                                                                                                              | 0.1227                                                                                                                                                                                          | 0.1270                                                                                                                                                                                 | 0.1863                                                                                                                                                                              | 0.1220                                                                                                                                                                                           | 0.1107                                                                                                                                                                                  |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                     |                                                                                                                                                                                                  |                                                                                                                                                                                         |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     | OSC-CLS                                                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                                                                                                     | DOSC-CLS                                                                                                                                                                                         |                                                                                                                                                                                         |
| OLM                                                                                                                                                | AML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OLM                                                                                                                                                                                 | OSC-CLS<br>AML                                                                                                                                                                                  | НСТ                                                                                                                                                                                    | OLM                                                                                                                                                                                 | DOSC-CLS<br>AML                                                                                                                                                                                  | НСТ                                                                                                                                                                                     |
| OLM<br>True                                                                                                                                        | AML<br>e (μg n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HCT<br>nL <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLM<br>Recovery (%)                                                                                                                                                                 | OSC-CLS<br>AML<br>Recovery (%)                                                                                                                                                                  | HCT<br>Recovery (%)                                                                                                                                                                    | OLM<br>Recovery (%)                                                                                                                                                                 | DOSC-CLS<br>AML<br>Recovery (%)                                                                                                                                                                  | HCT<br>Recovery (%)                                                                                                                                                                     |
| OLM<br>True<br>25                                                                                                                                  | AML<br>e (µg n<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HCT<br>nL <sup>-1</sup> )<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OLM<br>Recovery (%)<br>99.40                                                                                                                                                        | OSC-CLS<br>AML<br>Recovery (%)<br>99.43                                                                                                                                                         | HCT<br>Recovery (%)<br>100.20                                                                                                                                                          | OLM<br>Recovery (%)<br>99.40                                                                                                                                                        | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43                                                                                                                                                         | HCT<br>Recovery (%)<br>100.20                                                                                                                                                           |
| OLM<br>True<br>25<br>15                                                                                                                            | AML<br>e (μg n<br>7<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HCT<br>nL <sup>-1</sup> )<br>10<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OLM<br>Recovery (%)<br>99.40<br>98.20                                                                                                                                               | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67                                                                                                                                                | HCT<br>Recovery (%)<br>100.20<br>99.20                                                                                                                                                 | OLM<br>Recovery (%)<br>99.40<br>98.20                                                                                                                                               | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00                                                                                                                                               | HCT<br>Recovery (%)<br>100.20<br>99.27                                                                                                                                                  |
| OLM<br>True<br>25<br>15<br>15                                                                                                                      | AML<br>e (μg n<br>7<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60                                                                                                                                      | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00                                                                                                                                      | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24                                                                                                                                       | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60                                                                                                                                      | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00                                                                                                                                     | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24                                                                                                                                        |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15                                                                                                          | AML<br>e (μg n<br>7<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00                                                                                                                            | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20                                                                                                                             | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51                                                                                                                             | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00                                                                                                                            | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20                                                                                                                            | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58                                                                                                                              |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15                                                                                                    | AML<br>e (μg n<br>7<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60                                                                                                                   | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00                                                                                                                    | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60                                                                                                                    | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53                                                                                                                   | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00                                                                                                                   | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60                                                                                                                     |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                        | AML<br>e (μg n<br>7<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53                                                                                                          | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.00<br>99.57                                                                                                  | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73                                                                                                           | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53                                                                                                          | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.57                                                                                                          | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82                                                                                                            |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>17.5                                                                                | AML<br>e (μg n<br>7<br>3<br>4<br>5<br>6<br>7<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46                                                                                                | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67                                                                                                 | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62                                                                                                 | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51                                                                                                | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67                                                                                                | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53                                                                                                  |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>15<br>17.5<br>17.5                                                                              | AML<br>2 (μg n<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>11.25<br>12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20                                                                                      | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.00<br>99.57<br>101.67<br>100.71                                                                              | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60                                                                                       | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20                                                                                      | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.00<br>99.57<br>101.67<br>100.71                                                                             | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60                                                                                        |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>17.5<br>17.5<br>17.5                                                                            | AML<br>2 (μg n<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>11.25<br>12.5<br>13.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20<br>102.11                                                                            | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.250                                                                             | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60<br>100.73                                                                             | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20<br>102.11                                                                            | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.25                                                                             | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60<br>100.73                                                                              |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>17.5<br>17.5<br>17.5<br>17.5                                                                    | AML<br>e (μg n<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>11.25<br>11.25<br>12.5<br>13.75<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20<br>102.11<br>101.26                                                                  | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.250<br>102.20                                                                   | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60<br>100.73<br>100.50                                                                   | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20<br>102.11<br>101.26                                                                  | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.25<br>102.20                                                                   | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60<br>100.73<br>100.50                                                                    |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>17.5<br>17.5<br>17.5<br>17.5<br>17.                                                             | AML<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>11.25<br>11.25<br>13.75<br>10<br>13.75<br>10<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20<br>102.11<br>101.26<br>100.29                                                        | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.00<br>99.57<br>101.67<br>100.71<br>99.250<br>102.20<br>98.17                                                 | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60<br>100.73<br>100.50<br>100.50<br>100.40                                               | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20<br>102.11<br>101.26<br>100.23                                                        | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.25<br>102.20<br>98.17                                                          | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60<br>100.73<br>100.50<br>100.50                                                          |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>20                                                            | AML<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HCT<br>aL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>12.5<br>13.75<br>10<br>15<br>12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20<br>102.11<br>101.26<br>100.29<br>99.95                                               | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.00<br>99.57<br>101.67<br>100.71<br>99.250<br>102.20<br>98.17<br>94.40                                        | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60<br>100.73<br>100.50<br>100.40<br>98.32                                                | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20<br>102.11<br>101.26<br>100.23<br>99.95                                               | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.00<br>99.57<br>101.67<br>100.71<br>99.25<br>102.20<br>98.17<br>94.40                                        | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60<br>100.73<br>100.50<br>100.53<br>98.32                                                 |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>17.5<br>17.5<br>17.5<br>17.5<br>17.                                                             | AML<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>5<br>5<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>12.5<br>13.75<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75 | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20<br>102.11<br>101.26<br>100.29<br>99.95<br>99.95<br>99.20                             | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.00<br>99.57<br>101.67<br>100.71<br>99.250<br>102.20<br>98.17<br>94.40<br>99.33                               | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60<br>100.73<br>100.50<br>100.40<br>98.32<br>100.20                                      | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20<br>102.11<br>101.26<br>100.23<br>99.95<br>99.25                                      | DOSC-CLS<br>AML<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.00<br>99.57<br>101.67<br>100.71<br>99.25<br>102.20<br>98.17<br>94.40<br>99.33                                               | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60<br>100.73<br>100.50<br>100.53<br>98.32<br>100.10                                       |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>17.5<br>17.5<br>17.5<br>17.5<br>17.                                                             | AML<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>5<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>12.5<br>13.75<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75 | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20<br>102.11<br>101.26<br>100.29<br>99.95<br>99.95<br>99.20<br>101.10                   | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.250<br>102.20<br>98.17<br>94.40<br>99.33<br>101.00                              | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60<br>100.73<br>100.50<br>100.40<br>98.32<br>100.20<br>100.44                            | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20<br>102.11<br>101.26<br>100.23<br>99.95<br>99.25<br>101.10                            | DOSC-CLS<br>AML<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.25<br>102.20<br>98.17<br>94.40<br>99.33<br>101.00                                              | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60<br>100.73<br>100.50<br>100.53<br>98.32<br>100.10<br>100.36                             |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>15<br>17.5<br>17.5<br>17.5<br>17.5                                                              | AML<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>5<br>3<br>4<br>5<br>6<br>5<br>3<br>4<br>6<br>5<br>3<br>4<br>6<br>5<br>6<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>6<br>7<br>4<br>5<br>6<br>6<br>7<br>4<br>5<br>6<br>7<br>7<br>4<br>5<br>6<br>7<br>7<br>4<br>5<br>6<br>6<br>7<br>4<br>5<br>6<br>6<br>7<br>6<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>6<br>7<br>6<br>6<br>6<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>6<br>6<br>6<br>7<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                | HCT<br>nL <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>12.5<br>13.75<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>13.75<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>11.25<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>13.75<br>10<br>15<br>12.5<br>13.75<br>10<br>15<br>12.5<br>13.75<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>12.5<br>10<br>15<br>12.5<br>10<br>11.25<br>10<br>15<br>12.5<br>10<br>11.25<br>10<br>11.25<br>10<br>12.5<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>10<br>11.25<br>13.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20<br>102.11<br>101.26<br>100.29<br>99.95<br>99.95<br>99.20<br>101.10<br>98.90          | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.250<br>102.20<br>98.17<br>94.40<br>99.33<br>101.00<br>105.50                    | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60<br>100.73<br>100.50<br>100.40<br>98.32<br>100.20<br>100.44<br>98.62                   | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20<br>102.11<br>101.26<br>100.23<br>99.95<br>99.25<br>101.10<br>98.85                   | DOSC-CLS<br>AML<br>99,43<br>100.00<br>101.00<br>99,20<br>99,00<br>99,57<br>101.67<br>100.71<br>99,25<br>102.20<br>98.17<br>94.40<br>99,33<br>101.00<br>105.50                                    | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60<br>100.73<br>100.50<br>100.53<br>98.32<br>100.10<br>100.36<br>98.69                    |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>17.5<br>17.5<br>17.5<br>17                                                          | AML<br>= (μg n<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>5<br>3<br>4<br>6<br>5<br>3<br>4<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>6<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>7<br>4<br>6<br>7<br>7<br>7<br>4<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | HCT<br>1L <sup>-1</sup> )<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>12.5<br>13.75<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>13.75<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20<br>102.11<br>101.26<br>100.29<br>99.95<br>99.20<br>101.10<br>98.90<br>99.99          | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.250<br>102.20<br>98.17<br>94.40<br>99.33<br>101.00<br>105.50<br>100.01          | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60<br>100.73<br>100.50<br>100.40<br>98.32<br>100.20<br>100.44<br>98.62<br>99.99          | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20<br>102.11<br>101.26<br>100.23<br>99.95<br>99.25<br>101.10<br>98.85<br>99.98          | DOSC-CLS<br>AML<br>99,43<br>100.00<br>101.00<br>99,20<br>99,00<br>99,57<br>101.67<br>100.71<br>99,25<br>102.20<br>98.17<br>94.40<br>99,33<br>101.00<br>105.50                                    | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60<br>100.73<br>100.50<br>100.53<br>98.32<br>100.10<br>100.36<br>98.69<br>100.00          |
| OLM<br>True<br>25<br>15<br>15<br>15<br>15<br>15<br>15<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>20<br>20<br>20<br>20<br>20<br>0<br>0<br>0 | AML<br>2 (μg n<br>7<br>3<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>5<br>3<br>4<br>6<br>5<br>3<br>4<br>6<br>5<br>3<br>4<br>6<br>5<br>3<br>4<br>5<br>5<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>3<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>6<br>7<br>4<br>5<br>6<br>6<br>7<br>4<br>5<br>6<br>6<br>7<br>4<br>5<br>6<br>7<br>4<br>5<br>6<br>6<br>7<br>6<br>7<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                  | HCT<br>10<br>15<br>12.5<br>13.75<br>10<br>11.25<br>12.5<br>13.75<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>10<br>15<br>12.5<br>13.75<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.60<br>99.53<br>100.46<br>101.20<br>102.11<br>101.26<br>100.29<br>99.95<br>99.20<br>101.10<br>98.90<br>99.99<br>1.095 | OSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>99.67<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.250<br>102.20<br>98.17<br>94.40<br>99.33<br>101.00<br>105.50<br>100.01<br>2.366 | HCT<br>Recovery (%)<br>100.20<br>99.20<br>100.24<br>100.51<br>98.60<br>99.73<br>100.62<br>101.60<br>100.73<br>100.50<br>100.40<br>98.32<br>100.20<br>100.44<br>98.62<br>99.99<br>0.921 | OLM<br>Recovery (%)<br>99.40<br>98.20<br>98.60<br>100.00<br>99.53<br>99.53<br>100.51<br>101.20<br>102.11<br>101.26<br>100.23<br>99.95<br>99.25<br>101.10<br>98.85<br>99.98<br>1.061 | DOSC-CLS<br>AML<br>Recovery (%)<br>99.43<br>100.00<br>101.00<br>99.20<br>99.00<br>99.57<br>101.67<br>100.71<br>99.25<br>102.20<br>98.17<br>94.40<br>99.33<br>101.00<br>105.50<br>100.03<br>2.364 | HCT<br>Recovery (%)<br>100.20<br>99.27<br>100.24<br>100.58<br>98.60<br>99.82<br>100.53<br>101.60<br>100.73<br>100.50<br>100.53<br>98.32<br>100.10<br>100.36<br>98.69<br>100.00<br>0.908 |

Table II. Prediction of the calibration set by MCR-ALS and improved-CLS methods

*RMSEC* – root mean square error of calibration.

tors was selected according to Haaland and Thomas (29). Two factors were required for building improved CLS models for the three analytes except in the case of OSC-CLS for HCT where three factors were required. This fact shows that NAP, as a pre-processing technique, is simpler than OSC, especially in the case of HCT, even when the prediction ability of the CLS model is not enhanced.

After parameters optimization and the calibration step, all models were applied successfully for estimation of OLM, AML and HCT in calibration (Table II) and in validation

|      |          |                    |              | MCR-ALS      |              |              | NAP-CLS      |              |
|------|----------|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| OLM  | AML      | HCT                | OLM          | AML          | HCT          | OLM          | AML          | HCT          |
| Tru  | e (µg m  | 1L <sup>-1</sup> ) | Recovery (%) |
| 20   | 7        | 15                 | 100.75       | 99.86        | 99.00        | 101.60       | 100.00       | 100.07       |
| 22.5 | 3        | 12.5               | 100.40       | 100.67       | 102.08       | 101.07       | 100.67       | 102.56       |
| 22.5 | 4        | 10                 | 101.16       | 102.50       | 100.40       | 101.38       | 102.25       | 100.30       |
| 22.5 | 5        | 15                 | 100.62       | 99.00        | 98.73        | 101.64       | 99.20        | 99.80        |
| 22.5 | 6        | 11.25              | 99.64        | 99.00        | 97.42        | 100.00       | 99.00        | 97.87        |
| 22.5 | 7        | 13.75              | 100.93       | 99.57        | 94.91        | 101.69       | 99.71        | 96.00        |
| 25   | 3        | 13.75              | 100.16       | 95.33        | 98.98        | 101.16       | 95.33        | 99.85        |
| 25   | 4        | 15                 | 99.88        | 96.00        | 96.20        | 101.04       | 96.25        | 97.40        |
| 25   | 5        | 11.25              | 99.36        | 97.60        | 97.07        | 99.96        | 97.40        | 97.60        |
| 25   | 6        | 12.5               | 99.04        | 96.83        | 101.12       | 99.88        | 97.00        | 102.24       |
| N    | /lean (% | 6)                 | 100.19       | 98.64        | 98.59        | 100.94       | 98.68        | 99.37        |
|      | SD       |                    | 0.67         | 2.21         | 2.24         | 0.73         | 2.15         | 2.13         |
| RMS  | EP (µg   | mL-1)              | 0.1594       | 0.1064       | 0.3428       | 0.2627       | 0.1027       | 0.2771       |
|      |          |                    |              | OSC-CLS      |              |              | DOSC-CLS     |              |
| OLM  | AML      | HCT                | OLM          | AML          | HCT          | OLM          | AML          | HCT          |
| Tru  | e (µg m  | 1L <sup>-1</sup> ) | Recovery (%) |
| 20   | 7        | 15                 | 101.85       | 100.00       | 100.00       | 101.80       | 100.00       | 100.07       |
| 22.5 | 3        | 12.5               | 100.89       | 101.00       | 102.72       | 100.93       | 101.00       | 102.64       |
| 22.5 | 4        | 10                 | 101.24       | 102.50       | 100.50       | 101.24       | 102.50       | 100.30       |
| 22.5 | 5        | 15                 | 101.69       | 99.20        | 99.80        | 101.69       | 99.20        | 99.87        |
| 22.5 | 6        | 11.25              | 100.00       | 99.17        | 97.96        | 100.00       | 99.17        | 97.87        |
| 22.5 | 7        | 13.75              | 101.87       | 99.71        | 95.93        | 101.82       | 99.71        | 96.00        |
| 25   | 3        | 13.75              | 101.00       | 96.00        | 100.07       | 101.04       | 95.67        | 99.93        |
| 25   | 4        | 15                 | 100.96       | 96.50        | 97.47        | 100.96       | 96.50        | 97.47        |
| 25   | 5        | 11.25              | 99.88        | 97.80        | 97.87        | 99.88        | 97.80        | 97.69        |
| 25   | 6        | 12.5               | 99.96        | 97.17        | 102.32       | 99.92        | 97.17        | 102.32       |
| N    | /lean (% | 6)                 | 100.93       | 98.91        | 99.46        | 100.93       | 98.87        | 99.42        |
|      | SD       |                    | 0.77         | 2.05         | 2.16         | 0.76         | 2.10         | 2.14         |
| RMS  | EP (µg   | mL-1)              | 0.2641       | 0.0950       | 0.2776       | 0.2627       | 0.0963       | 0.2768       |

Table III. Prediction of the independent validation test set by the proposed MCR-ALS and improved CLS methods

RMSEP - root mean square error of prediction.

sets (Table III). The mean recovery, standard deviation, *RMSEC*, *RMSEP* values are summarized in Tables II and III. The law values of *RMSEP* indicate the minor error of prediction and the high predictive ability of the developed methods.

The suggested methods were then applied with a great success to the analysis of Tribenzor<sup>®</sup> tablets in all FDA approved ratios (Table IV). This fact was further assessed by the statistical comparison of *t*- and *F*-values of the suggested models and the reference PLS method (17) (Table V), showing that there was no significant difference between our models and the reference in either accuracy or precision.

# Figures of merit

Figures of merit were calculated by the MVC1 toolbox for NAP-CLS, OSC-CLS and DOSC-CLS models. The results for the suggested models for the three drugs are presented in Table VI. The best figures of merit were obtained from the application of the DOSC-CLS model. This is indicated by the high sensitivity and selectivity and low values of *LOD*. This may be attributed to the highest capability of DOSC-CLS to extract the noise from the spectral data.

| Dosage form             |                                  |                                        |                                                             |                                                               | М                                                              | CR-ALS                                                                               |                                                            |                                                     | NAP-CLS                                              | 5                                                                                                     |                                                     |
|-------------------------|----------------------------------|----------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                         | Ratio                            |                                        | Label o                                                     | laim (µ                                                       | g mL <sup>-1</sup> )                                           | OLM                                                                                  | AML                                                        | HCT                                                 | OLM                                                  | AML                                                                                                   | HCT                                                 |
| OLM                     | AML                              | HCT                                    | OLM                                                         | AML                                                           | HCT                                                            | % of the<br>label claim                                                              |                                                            |                                                     |                                                      |                                                                                                       |                                                     |
| 4                       | 1                                | 2.5                                    | 20                                                          | 6.95                                                          | 12.5                                                           | 97.48                                                                                | 98.48                                                      | 97.79                                               | 97.53                                                | 98.68                                                                                                 | 98.04                                               |
| 4                       | 1                                | 1.25                                   | 30                                                          | 10.42                                                         | 9.375                                                          | 102.61                                                                               | 97.75                                                      | 96.42                                               | 103.41                                               | 101.54                                                                                                | 98.60                                               |
| 8                       | 1                                | 5                                      | 30                                                          | 5.21                                                          | 18.75                                                          | 101.73                                                                               | 98.11                                                      | 99.87                                               | 103.77                                               | 96.73                                                                                                 | 102.22                                              |
| 8                       | 1                                | 2.5                                    | 30                                                          | 5.21                                                          | 9.375                                                          | 101.34                                                                               | 96.09                                                      | 99.59                                               | 102.14                                               | 98.85                                                                                                 | 100.69                                              |
|                         |                                  | Me                                     | an (%)                                                      |                                                               |                                                                | 100.79                                                                               | 97.61                                                      | 98.42                                               | 101.72                                               | 98.95                                                                                                 | 99.89                                               |
|                         |                                  |                                        | SD                                                          |                                                               |                                                                | 2.27                                                                                 | 1.06                                                       | 1.62                                                | 2.88                                                 | 1.98                                                                                                  | 1.93                                                |
| Dosage form             |                                  |                                        |                                                             |                                                               |                                                                |                                                                                      |                                                            |                                                     |                                                      |                                                                                                       |                                                     |
|                         |                                  | Dosa                                   | ge form                                                     |                                                               |                                                                | 0                                                                                    | SC-CLS                                                     |                                                     | Ι                                                    | DOSC-CL                                                                                               | S                                                   |
|                         | Ratio                            | Dosa                                   | ge form<br>Label c                                          | laim (μį                                                      | g mL <sup>-1</sup> )                                           | O<br>OLM                                                                             | SC-CLS<br>AML                                              | HCT                                                 | I<br>OLM                                             | DOSC-CL<br>AML                                                                                        | S<br>HCT                                            |
| OLM                     | Ratio<br>AML                     | Dosa<br>HCT                            | ge form<br>Label o<br>OLM                                   | laim (με<br>AML                                               | g mL <sup>-1</sup> )<br>HCT                                    | OLM<br>% of the<br>label claim                                                       | SC-CLS<br>AML                                              | НСТ                                                 | I<br>OLM                                             | DOSC-CL<br>AML                                                                                        | S<br>HCT                                            |
| OLM<br>4                | Ratio<br>AML<br>1                | Dosa<br>HCT<br>2.5                     | ge form<br>Label o<br>OLM<br>20                             | claim (μş<br>AML<br>6.95                                      | g mL <sup>-1</sup> )<br>HCT<br>12.5                            | O<br>OLM<br>% of the<br>label claim<br>97.43                                         | SC-CLS<br>AML<br>98.01                                     | HCT<br>97.97                                        | OLM<br>97.39                                         | DOSC-CL<br>AML<br>98.48                                                                               | S HCT 97.86                                         |
| OLM<br>4<br>4           | Ratio<br>AML<br>1<br>1           | Dosa<br>HCT<br>2.5<br>1.25             | ge form<br>Label o<br>OLM<br>20<br>30                       | elaim (μ<br>AML<br>6.95<br>10.42                              | g mL <sup>-1</sup> )<br>HCT<br>12.5<br>9.375                   | O<br>OLM<br>% of the<br>label claim<br>97.43<br>102.07                               | SC-CLS<br>AML<br>98.01<br>98.91                            | HCT<br>97.97<br>98.63                               | 0LM<br>97.39<br>102.09                               | OOSC-CL<br>AML<br>98.48<br>98.71                                                                      | S HCT<br>97.86<br>98.6                              |
| OLM 4 4 8               | Ratio<br>AML<br>1<br>1<br>1      | Dosa<br>HCT<br>2.5<br>1.25<br>5        | ge form<br>Label o<br>OLM<br>20<br>30<br>30                 | elaim (µş<br>AML<br>6.95<br>10.42<br>5.21                     | g mL <sup>-1</sup> )<br>HCT<br>12.5<br>9.375<br>18.75          | O<br>OLM<br>% of the<br>label claim<br>97.43<br>102.07<br>103.63                     | SC-CLS<br>AML<br>98.01<br>98.91<br>96.48                   | HCT<br>97.97<br>98.63<br>102.24                     | 0LM<br>97.39<br>102.09<br>103.62                     | OOSC-CL<br>AML<br>98.48<br>98.71<br>96.38                                                             | S HCT<br>97.86<br>98.6<br>102.29                    |
| OLM<br>4<br>4<br>8<br>8 | Ratio<br>AML<br>1<br>1<br>1<br>1 | Dosa<br>HCT<br>2.5<br>1.25<br>5<br>2.5 | ge form<br>Label o<br>OLM<br>20<br>30<br>30<br>30<br>30     | elaim (µ<br>AML<br>6.95<br>10.42<br>5.21<br>5.21              | g mL <sup>-1</sup> )<br>HCT<br>12.5<br>9.375<br>18.75<br>9.375 | O<br>OLM<br>% of the<br>label claim<br>97.43<br>102.07<br>103.63<br>103.84           | SC-CLS<br>AML<br>98.01<br>98.91<br>96.48<br>98.58          | HCT<br>97.97<br>98.63<br>102.24<br>101.19           | OLM<br>97.39<br>102.09<br>103.62<br>103.83           | 98.48<br>98.71<br>96.38<br>98.58                                                                      | S<br>HCT<br>97.86<br>98.6<br>102.29<br>100.69       |
| OLM<br>4<br>4<br>8<br>8 | Ratio<br>AML<br>1<br>1<br>1<br>1 | Dosa<br>HCT<br>1.25<br>5<br>2.5<br>Me  | ge form<br>Label o<br>OLM<br>20<br>30<br>30<br>30<br>an (%) | claim (μ <sub>4</sub><br>AML<br>6.95<br>10.42<br>5.21<br>5.21 | g mL <sup>-1</sup> )<br>HCT<br>12.5<br>9.375<br>18.75<br>9.375 | O<br>OLM<br>% of the<br>label claim<br>97.43<br>102.07<br>103.63<br>103.84<br>101.74 | SC-CLS<br>AML<br>98.01<br>98.91<br>96.48<br>98.58<br>98.00 | HCT<br>97.97<br>98.63<br>102.24<br>101.19<br>100.01 | OLM<br>97.39<br>102.09<br>103.62<br>103.83<br>101.73 | DOSC-CL           AML           98.48           98.71           96.38           98.58           98.04 | S HCT<br>97.86<br>98.6<br>102.29<br>100.69<br>99.86 |

Table IV. Analysis results for the prediction of the dosage form by the proposed MCR-ALS and improved-CLS methods

| Demonster                | MCR-ALS |         |        |        | NAP-CLS  |        |        | Reference method (ref. 17) |        |  |
|--------------------------|---------|---------|--------|--------|----------|--------|--------|----------------------------|--------|--|
| rarameter -              | OLM     | AML     | HCT    | OLM    | AML      | HCT    | OLM    | AML                        | HCT    |  |
|                          | 97.48   | 98.48   | 97.79  | 97.53  | 98.68    | 98.04  | 103.48 | 97.6                       | 98.6   |  |
| % of                     | 102.61  | 97.75   | 96.42  | 103.41 | 101.54   | 98.60  | 103.66 | 98.86                      | 102.23 |  |
| label claim              | 101.73  | 98.11   | 99.87  | 103.77 | 96.73    | 102.22 | 101.88 | 96.51                      | 101.09 |  |
|                          | 101.34  | 96.09   | 99.59  | 102.14 | 98.85    | 100.69 | 97.29  | 97.38                      | 97.94  |  |
| Mean (%)                 | 100.79  | 97.61   | 98.42  | 101.72 | 98.95    | 99.89  | 101.58 | 97.59                      | 99.97  |  |
| SD                       | 2.270   | 1.055   | 1.619  | 2.877  | 1.976    | 1.928  | 2.968  | 0.97                       | 2.03   |  |
| Variance                 | 5.153   | 1.113   | 2.621  | 8.277  | 3.905    | 3.718  | 8.809  | 0.941                      | 4.121  |  |
| Number of samples        | 4       | 4       | 4      | 4      | 4        | 4      | 4      | 4                          | 4      |  |
| Student's t <sup>a</sup> | 0.422   | 0.028   | 1.192  | 0.067  | 1.238    | 0.055  | -      | -                          | -      |  |
| F ratio <sup>a</sup>     | 1.710   | 1.182   | 1.192  | 1.064  | 4.151    | 1.108  | _      | -                          | -      |  |
|                          |         | OSC-CLS |        | I      | DOSC-CLS |        |        | Reference method (ref. 17) |        |  |
| -                        | OLM     | AML     | HCT    | OLM    | AML      | HCT    | OLM    | AML                        | HCT    |  |
|                          | 102.07  | 98.01   | 97.97  | 97.39  | 98.48    | 97.86  | 103.48 | 97.60                      | 98.60  |  |
| % of                     | 97.428  | 98.91   | 98.63  | 102.09 | 98.71    | 98.60  | 103.66 | 98.86                      | 102.23 |  |
| label claim              | 103.63  | 96.48   | 102.24 | 103.62 | 96.38    | 102.29 | 101.88 | 96.51                      | 101.09 |  |
|                          | 103.84  | 98.58   | 101.19 | 103.83 | 98.58    | 100.69 | 97.29  | 97.38                      | 97.94  |  |
| Mean (%)                 | 101.74  | 98.00   | 100.01 | 101.73 | 98.04    | 99.86  | 101.58 | 97.59                      | 99.97  |  |
| SD                       | 2.982   | 1.076   | 2.036  | 2.997  | 1.109    | 2.015  | 2.968  | 0.97                       | 2.03   |  |
| Variance                 | 8.895   | 1.158   | 4.144  | 8.982  | 1.230    | 4.060  | 8.809  | 0.941                      | 4.121  |  |
| Number of samples        | 4       | 4       | 4      | 4      | 4        | 4      | 4      | 4                          | 4      |  |
| Student's t <sup>a</sup> | 0.078   | 0.562   | 0.030  | 0.073  | 0.611    | 0.070  | -      | -                          | -      |  |
| F ratio <sup>a</sup>     | 1.01    | 1.231   | 1.006  | 1.02   | 1.307    | 1.015  | -      | -                          | -      |  |

Table V. Statistical comparison of the results obtained by MCR-ALS and improved CLS methods and the reference PLS method for the analysis of Tribenzor® tablets

<sup>a</sup> For *p* = 0.05 and 6 degrees of freedom tabular cries *t* and *F* are 2.447 and 9.277, respectively.

Our work provides the first spectrophotometric method designed for the analysis of Tribenzor tablets in all FDA approved ratios. In addition, other reported spectrophotometric methods (13–15) experienced low robustness since they are considered as univariate calibration methods (calibration relies on measuring absorbances at just one wavelength). Thus, any error in the wavelength scale will prompt false results. Incorporation of numerous spectral wavelengths instead of utilizing a solitary wavelength enhances enormously the precision and predictive power of the multivariate calibration methods.

| Component | Figure of merit                             | NAP-CLS | OSC-CLS | DOSC-CLS |
|-----------|---------------------------------------------|---------|---------|----------|
| OLM       | Sensitivity (mL $\mu g^{-1}$ ) <sup>a</sup> | 0.089   | 0.091   | 0.22     |
|           | Analytical sensitivity (mL $\mu g^{1})^b$   | 78      | 80      | 190      |
|           | Selectivity <sup>c</sup>                    | 0.4     | 0.41    | 1        |
|           | $LOD \ (\mu g \ m L^{-1})^d$                | 0.037   | 0.036   | 0.015    |
| AML       | Sensitivity (mL $\mu g^{-1}$ ) <sup>a</sup> | 0.074   | 0.074   | 0.2      |
|           | Analytical sensitivity (mL $\mu g^{1})^b$   | 65      | 65      | 180      |
|           | Selectivity <sup>c</sup>                    | 0.36    | 0.37    | 0.99     |
|           | $LOD \ (\mu g \ m L^{-1})^d$                | 0.045   | 0.045   | 0.017    |
| HCT       | Sensitivity (mL $\mu g^{-1}$ ) <sup>a</sup> | 0.15    | 0.15    | 0.19     |
|           | Analytical sensitivity (mL $\mu g^{1})^b$   | 130     | 130     | 170      |
|           | Selectivity <sup>c</sup>                    | 0.79    | 0.8     | 1        |
|           | $LOD \ (\mu g \ m L^{-1})^d$                | 0.022   | 0.022   | 0.017    |

Table VI. Figures of merit of OLM, AML and HCT for improved CLS methods

All the methods were built by 2 factors except OSC-CLS model, which was built by 3 factors for HCT.

<sup>a</sup> Calibration sensitivity measures the changes in response as a function of the concentration of a particular analyte.

<sup>b</sup> Analytical sensitivity equals sensitivity divided by instrumental noise.

<sup>c</sup> Selectivity indicates the part of the total signal that is not lost due to spectral overlap.

<sup>d</sup> Limit of detection is the lowest concentration of an analyte that can be detected, but not necessarily quantified.

#### CONCLUSIONS

Different chemometric models have been applied for the analysis of OLM, AML and HCT in their combined dosage form. The methods are: MCR-ALS, NAP-CLS, OSC-CLS and DOSC-CLS methods. These methods have the qualitative power (estimation of pure spectra) as well as quantitative power (prediction of concentrations of the three analytes in their mixtures). The developed methods are more rapid and easier compared to the traditional spectrometric methods along with other important analytical merits such as sensitivity and selectivity. Among the proposed pre-processing steps, DOSC was the most powerful one, increasing the quantitative power of the CLS method. All the suggested methods were validated and can be applied for routine quality control analysis of Tribenzor® tablets in all FDA approved ratios without prior separation or interference from commonly encountered additives.

*Acronyms.* – AML – amlodipine besylate, ANN – artificial neural network, CLS – classical least squares, DOSC – direct orthogonal signal correction, HCT – hydrochlorothiazide, LWR – locally weighted regression, MCR-ALS – multivariate curve resolution-alternating least squares, MLR – multiple linear regression, NAP – net analyte processing, OLM – olmesartan medoxomil, OSC – orthogonal signal correction, PCR – principal component regression, PLS – partial least squares.

*Acknowledgements.* – The authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project no. RGP-VPP-322.

#### REFERENCES

- T. Sharma, N. Mishra, S. C. Si and D. G. Shankar, Simultaneous estimation of olmesartan medoxomil and amlodipine besylate in solid dosage form by UV spectrophotometry, *Pharm. Lett.* 2 (2010) 302–307.
- M. Mirzaei, M. Khayat and A. Saeidi, Determination of para-aminobenzoic acid (PABA) in Bcomplex tablets using the Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) method, *Sci. Iran.* **19** (2012) 561–564; DOI: 10.1016/j.scient.2011.12.016.
- E. Peré-Trepat, S. Lacorte and R. Tauler, Alternative calibration approaches for LC–MS quantitative determination of coeluted compounds in complex environmental mixtures using multivariate curve resolution, *Anal. Chim. Acta* 595 (2007) 228–237; DOI: 10.1016/j.aca.2007.04.011.
- T. Azzouz and R. Tauler, Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples, *Talanta* 74 (2008) 1201–1210; DOI: 10.1016/j.talanta.2007.08.024.
- M. Antunes, J. Simao, A. Duarte and R. Tauler, Multivariate curve resolution of overlapping voltammetric peaks: quantitative analysis of binary and quaternary metal mixtures, *Analyst* 127 (2002) 809–817; DOI: 10.1039/B200243B.
- H. Winning, F. H. Larsen, R. Bro and S. B. Engelsen, Quantitative analysis of NMR spectra with chemometrics, J. Magn. Reson. 190 (2008) 26–32; DOI: 10.1016/j.jmr.2007.10.005.
- K. Koga, S. Yamagishi, M. Takeuchi, Y. Inagaki, S. Amano, T. Okamoto, T. Saga, Z. Makita and M. Yoshizuka, CS-886, a new angiotensin II type 1 receptor antagonist, ameliorates glomerular anionic site loss and prevents progression of diabetic nephropathy in Otsuka Long-Evans Tokushima fatty rats, *Mol. Med.* 8 (2002) 591–599.
- 8. *Martindale The Complete Drug Reference*" (Ed. S. C. Sweetman), 36 ed., The Pharmaceutical Press, London 2009.
- R. F. Reilly and E. K. Jackson, Regulation of Renal Function and Vascular Volume, in Goodman and Gilman's The Pharmacological Basis of Therapeutics (Eds. L. L. Brunton, B. A. Chabner and B. C. Knollmann) McGraw Hill, New York 2010.
- A. Pawar, A. N. Rao, J. S. Rao and V. J. Rao, A validated method for the simultaneous quantification of hydrochlorothiazide, olmesartan medoxomil and amlodipine in bulk and pharmaceutical dosage form, *J. Pharm. Res.* 5 (2012) 43–46.
- K. K. Kumar, C. K. Rao, G. Madhusudan and K. Mukkanti, Rapid simultaneous determination of olmesartan-amlodipine and hydrochlorothiazide in combined pharmaceutical dosage form by stability-indicating ultra performance liquid chromatography, *Am. J. Anal. Chem.* 3 (2012) 50–58; DOI: 10.4236/ajac.2012.31008.
- J. R. Rao, M. P. Rajput and S. S. Yadav, Simultaneous quantitation of olmesartan medoxomil, amlodipine besylate and hydrochlorothiazide in pharmaceutical dosage form by using HPLC, *Int. J. Pharm. Tech. Res.* **3** (2011) 1435–1440.
- 13. J. Saminathan and T. Vetrichelvan, Method development and validation of olmesartan, amlodipine and hydrochlorothiazide in combined tablet dosage form, *Int. J. Pharm. Res. Anal.* 1 (2011) 7–14.

- H. Sharma, N. Jain and S. Jain, Development of spectrophotometric method for quantitative estimation of amlodipine besylate, olmesartan medoxomil and hydrochlorthiazide in tablet dosage form, *Pharm. Anal. Acta* 2 (2011) 1–4.
- S. R. Patel and C. N. Patel, Development and validation of spectrophotometric method for determination of olmesartan, amlodipine and hydrochlorothiazide in combined pharmaceutical dosage forms, *Novel Sci. Int. J. Pharm. Sci.* 1 (2012) 317–321.
- H. W. Darwish, Application of smart spectrophotometric methods and artificial neural network for the simultaneous quantitation of olmesartan medoxomil, amlodipine besylate and hydrochlorothiazide in their combined pharmaceutical dosage form, *Chem. Cent. J.* 7 (2013) 1–9; DOI: 10.1186/1752-153X-7-22.
- H. W. Darwish, A. H. Bakheit and M. I. Attia, Three multivariate calibration methods for simultaneous spectrophotometric determination of olmesartan medoxamil, amlodipine besylate and hydrochlorothiazide in their combined dosage form, *Dig. J. Nanomat. Biostr.* 8 (2013) 323–333.
- R. Tauler, Multivariate curve resolution applied to second order data, *Chemometr. Intell. Lab. Syst.* 30 (1995) 133–146; DOI: 10.1016/0169-7439(95)00047-X.
- R. Gargallo, R. Tauler, F. Cuesta-Sanchez and D. Massart, Validation of alternating least-squares multivariate curve resolution for chromatographic resolution and quantitation, *TrAC Trends Analyt. Chem.* 15 (1996) 279–286. DOI: 10.1016/0165-9936(96)00048-9.
- 20. R. Kramer, Chemometric Techniques for Quantitative Analysis, CRC, New York 1998.
- S. Wold, H. Antti, F. Lindgren and J. Öhman, Orthogonal signal correction of near-infrared spectra, *Chemometr. Intell. Lab. Syst.* 44 (1998) 175–185; DOI: 10.1016/S22. J. Sjöblom, O. Svensson, M. Josefson, H. Kullberg and S. Wold, An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra, *Chemometr. Intell. Lab. Syst.* 44 (1998) 229–244; DOI: 10.1016/S0169-7439(98)00112-9.
- T. Fearn, On orthogonal signal correction, *Chemometr. Intell. Lab. Syst.* 50 (2000) 47–52; DOI: 10.1016/ S0169-7439(99)00045-3.
- 24. J. A. Westerhuis, S. de Jong and A. K. Smilde, Direct orthogonal signal correction, *Chemometr. Intell. Lab. Syst.* 56 (2001) 13–25; DOI: 10.1016/S0169-7439(01)00102-2.
- H. C. Goicoechea and A. C. Olivieri, A comparison of orthogonal signal correction and net analyte preprocessing methods. Theoretical and experimental study, *Chemometr. Intell. Lab. Syst.* 56 (2001) 73–81; DOI: 10.1016/S0169-7439(01)00110-1.
- 26. J. Jaumot, R. Gargallo, A. de Juan and R. Tauler, A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB, *Chemometr. Intell. Lab. Syst.* **76** (2005) 101–110; DOI: 10.1016/j.chemolab.2004.12.007.
- A. C. Olivieri, H. C. Goicoechea and F. A. Iñón, MVC1: an integrated MatLab toolbox for first-order multivariate calibration, *Chemometr. Intell. Lab. Syst.* 73 (2004) 189–197; DOI: 10.1016/j.chemolab.2004.03.004.
- R. G. Brereton, Multilevel multifactor designs for multivariate calibration, *Analyst* 122 (1997) 1521– 1529; DOI: 10.1039/A703654J.
- 29. D. M. Haaland and E. V. Thomas, Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information, *Anal. Chem.* **60** (1988) 1193–1202; DOI: 10.1021/ac00162a020.