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Computer-aided approaches reveal trihydroxychroman and 
pyrazolone derivatives as potential inhibitors of SARS-CoV-2 

virus main protease

COVID-19 was declared a pandemic by the World Health 
Organization (WHO) in March 2020. The disease is caused 
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). The aim of this study is to target the SARS-CoV-2 
virus main protease (Mpro) via structure-based virtual 
screening. Consequently, > 580,000 ligands were processed 
via several filtration and docking steps, then the top 21 com-
pounds were analysed extensively via MM-GBSA scoring 
and molecular dynamic simulations. Interestingly, the top 
compounds showed favorable binding energies and binding 
patterns to the protease enzyme, forming interactions with 
several key residues. Trihydroxychroman and pyrazolone 
derivatives, SN02 and SN18 ligands, exhibited very promis-
ing binding modes along with the best MM-GBSA scoring of 
–40.9 and –41.2 kcal mol–1, resp. MD simulations of 300 ns for 
the ligand-protein complexes of SN02 and SN18 affirmed the 
previously attained results of the potential inhibition activ-
ity of these two ligands. These potential inhibitors can be the 
starting point for further studies to pave way for the disco
very of new antiviral drugs for SARS-CoV-2.

Keywords: COVID-19, Mpro, SARS-COV-2, antiviral, virtual 
screening, docking

The coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). This virus has 82 and ~50 % structural similarities with 
SARS-CoV and MERS-CoV, resp. (1). SARS-CoV-2 genome is a positive sense, single-
stranded RNA and the main structure consists of 14 open reading frames (ORFs), which 
encode 15 non-structural proteins, 4 structural proteins and 8 accessory proteins (2). The 
most important non-structural protein (nsp) is the main protease (Mpro) which plays an 
important role in the virus life cycle (3), and its crystal structure has been recently revealed 
through X-ray crystallography (4).

Although there are no currently FDA-approved medicines to treat COVID-19 disease, 
there are several potential drugs to inhibit SARS-CoV-2 activity (5). These compounds can 
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be classified according to their mode of action into inhibitors of the TMPRSS2 serine pro-
tease and subsequently preventing the virus from entering the host cell (6), such as camo-
stat mesylate, drugs that block the interaction between the virus and the host angiotensin- 
-converting enzyme II (ACE2), like hydroxychloroquine, or those that inhibit the viral 
RNA-dependent RNA polymerase (RdRp) protein, such as remdesivir and lopinavir, and 
finally drugs that inhibit the activity of SARS-CoV-2 Mpro protease (4).

Despite these advantages, no efficient treatment is currently available for COVID-19 
and the death toll is still rising daily. Thus, the goal of this project is to discover new 
potential inhibitors of the SARS-CoV-2 Mpro enzyme via computer-aided drug design.

EXPERIMENTAL

Virtual screening

The Mpro crystal structure [PDB code: 6LU7 (4)] was first checked and corrected via the 
MOE software (7). Then, it was processed through Protein Preparation Wizard in the 
Maestro software (8), where hydrogen atoms and partial charges were added accordingly. 
Ligand database was obtained from a commercial source (TimTec LLC), then prepared by 
LigPrep in Maestro and afterwards filtered based on the drug-like rules (rotatable bond 
≤ 10, molecular mass ≤ 500, logP ≤ 5.0, PSA ≤ 140, HB donor ≤ 5, HB acceptor ≤ 10). The 
filtered ligand dataset was docked into the Mpro active site. The Glide (9) virtual screening 
workflow (VSW) is a three-step protocol that includes three levels of improved docking 
precisions: high-throughput virtual screening (HTVS), standard precision (SP), and extra-
precision (XP). The top 30 % scoring ligands, HTVS and SP, were selected for the next 
level of docking. That ended up with 78,783 ligand enumerations that were docked and 
ranked by GLIDE-XP. Visual inspection was conducted afterwards to check the hits fitting 
into the target pocket. Finally, 21 ligands belonging to various structural scaffolds and 
showing convenient binding modes in the Mpro active site were selected.

MD simulation and MM-GBSA scoring

MD simulation studies were conducted to further investigate ligand’s binding affini-
ties and to inspect ligand’s fitting into the target pocket. Two stages of MD simulation were 
carried out for the selected 21 compounds using the AMBER 18 Force field (10). Ligands 
were assigned partial charges via the Antechamber program (11) using the Generalized 
Amber Force Field (GAFF) and AM1-BCC (12). The protein structure was assigned partial 
charges and other parameters using the ff19SB force field. The ligand-protein complex 
system was built using the xleap module of AmberTools, where it was neutralized by the 
addition of Na+ counter ions and solvated by a truncated octahedral box of TIP3P water.

The system was then energy minimized using the pmemd program in the AMBER 18 
package (10) through two steps: firstly, all solute atoms were restrained with a force con-
stant of 500 kcal mol−1 Å−2 during minimization, and then the whole system was subjected 
to minimization without applying any restraints. Using MD simulation, the system was 
then gradually heated through the NVT ensemble from 0 to 300 K with a 10 kcal mol−1 Å−2 
restraint on ligand atoms over 20 ps. The SHAKE algorithm was employed for all bonds 
involving hydrogen atoms. Finally, a production MD simulation of 20 ns for all 21 com-
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pounds was performed under NPT conditions with a system temperature and pressure 
fixed to 300 K and of 1.01×105 Pa, respectively. MD simulation was continued till 300 ns for 
compounds with MM-GBSA score ≤ –40 mol–1 (SN02 and SN18).

Clustering and PLIF analysis

Clustering was performed using DBSCAN via the cpptraj module of AmberTools (14). For 
each ligand-protein complex, resultant frames from the desired period of the simulation were 
utilized in the clustering process while skipping every 10th frame. Each system was stripped 
of ions and solvent molecules. The distance cutoff between points for forming a cluster was 
set to 3.0 (default value). Protein-ligand interaction fingerprint (PLIF) was conducted for the 
top clustered configuration of each complex obtained from the MD simulation. The PLIF 
analysis was generated using the MOE software where the minimum score thresholds for 
hydrogen bond and arene attraction were set to 1.5 and 1 kcal mol–1 (default settings), resp. (7). 
The created PLIF graph displays the interaction occupancy of all residues in the Mpro active 
site, defined as the percentage of ligands interacting with the given amino acid.

RESULTS AND DISCUSSION

Fig. 1 schematically illustrates in the virtual screening protocol conducted against the 
SARS-CoV-2 protease enzyme. A commercial ligand library (TimTec company) was first to 
filter for druglikeness before docking into the Mpro active site, reducing the library size 
from 582,474 ligands to 440,617 ligands. The drug-like library was initially screened using 
the GLIDE-HTVS docking algorithm. The top 30 % of ligands were re-docked in a slower 
but more accurate docking algorithm using GLIDE-SP. Finally, docking results were fur-
ther refined by docking the resultant top 30 % using the extra-precision algorithm (GLIDE-
XP) in the Schrödinger software package.

The resultant docked poses of the top 500 ligands were visually inspected inside the 
Mpro binding site based on their fitting into the cavity and their interactions with the sur-
rounding residues. A shortlist of 21 compounds were selected from various chemical clus-
ters and showed to have favourable docking scores ranging from –7.4 to –8.8 kcal mol–1 
(Table I).

As docking suffers from poor scoring function, more accurate methods such as MM-
GBSA calculations are used to re-score docked ligands and predict their binding energies. 
MM-GBSA scoring method has shown a better correlation (than docking-associated scor-
ing functions) between predicted scores and the actual inhibition constant (Ki) or IC50 (13). 
Consequently, these shortlisted 21 compounds were simulated with the target enzyme for 
20 ns, then they were rescored via the MM-GBSA method. Interestingly, all 21 compounds 
have shown low and favourable binding energies ranging from –20 to –41.2 kcal mol–1. 
Table II lists the MM-GBSA scores along with each component scoring obtained for the 
best four compounds, having SN02 and SN18 scoring the lowest binding energies of all 
tested ligands (< –40 kcal mol–1).

It was interesting to check which active residues in the Mpro pocket are mostly involved 
when interacting with the bound ligands. To do that, the most populated binding modes 
of these 21 compounds were identified through clustering the resulting frames of the 10 ns 
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Fig. 1. Virtual screening workflow conducted against the Mpro active site.

Table I. Docking scores of the best compounds selected based on visual inspection

Name Compound 
ID

GLIDE-XP score 
(kcal mol–1) Name Compound 

ID
GLIDE-XP score 

(kcal mol–1)

SN01 HTS34630 –7.60 SN12 ST403229 –7.97
SN02 ST033522 –8.81 SN13 ST4073948 –7.97
SN03 ST056309 –7.83 SN14 ST4083738 –7.71
SN04 ST057134 –8.09 SN15 ST4092083 –8.53
SN05 ST057145 –7.79 SN16 ST4138931 –7.36
SN06 ST060285 –8.00 SN17 ST4151611 –8.27
SN07 ST069336 –8.18 SN18 ST45214031 –7.63
SN08 ST070937 –7.96 SN19 ST45262616 –7.82
SN09 ST075200 –7.72 SN20 ST50072883 –8.10
SN10 ST075699 –7.82 SN21 ST50892216 –7.85
SN11 ST082430 –7.73
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of the MD simulation. As shown in Fig. 2, the most engaged residue in ligand interaction 
is Glu166 (15 out of 21 ligands), which has been previously identified as one of the impor-
tant residues for Mpro inhibitors binding (4, 15). Other residues to interact with more than 
20 % of ligands are Thr 26, Gly143 and Cys145; the latter is the nucleophile which reacts 
with the Mpro irreversible inhibitors in the S1’ pocket (4).

In order to predict the binding mode of SN02 and SN18 with higher accuracy, we ran 
MD simulations for the ligand-protein complexes resulting from docking for a further 
300 ns, where RMSD measurements were monitored for both the ligand molecule and the 
protein backbone atoms. That was followed by clustering the produced trajectories to select 
the most frequent protein-ligand conformations in order to analyze the binding modes of 
the best two compounds.

As shown in Fig. 3a, SN02 seems to be quite stable in the Mpro pocket as its RMSD 
values slightly fluctuating between 1.0–1.5 Å, with the protein backbone also showing a 
fairly stable tertiary structure (1.5–2.5 Å) throughout the 300-ns MD simulations. In terms 
of binding, SN02 showed good fitting inside the Mpro catalytic pocket (Fig. 3b), spanning 
over the sub-sites (i.e., S1’, S1 and S2). Furthermore, SN02 was able to make several hydro-
gen bond interactions through its hydroxyl groups with three different residues (i.e., Cys44 
and Phe140) located in the S1 and S2 pockets (Fig. 3c). However, the other two polar groups 
have been placed deep inside the pocket with no clear role in the protein-ligand binding, 
which seems to be responsible for its high EGB value (55.2 kcal mol–1, Table II). Hence, 
elimination or replacement of these unnecessary polar groups should be considered in the 
future to reduce the SN02 desolvation penalty and improve its binding affinity towards 
the Mpro pocket.

Fig. 2. Protein-ligand interaction fingerprint of the visually selected 21 compounds.
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On the other hand, SN18 seems to be less complicated as it possesses a fewer number 
of chiral centers compared to the SN02 structure, which introduces this compound as a 
more attractive candidate for drug-like Mpro inhibition. As shown in Fig. 4a, SN18 showed 
to be stable inside the Mpro binding site, with an average RMSD value of 1.7 Å. The com-

Fig. 3. a) The RMSD values of SN02 (red) and the protein backbone (black) over the 300 ns MD simu-
lation, b) the shape fitting of the ligand molecule inside the Mpro active site along with c) the 3D bind-
ing mode of the ligand-protein complex.

Fig. 4. a) The RMSD values of SN18 (red) and the protein backbone (black) over the 300 ns MD simu-
lation, b) the shape fitting of the ligand molecule inside the Mpro active site along with c) the 3D bind-
ing mode of the ligand-protein complex.
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pound shows nice complementarity with the target enzyme in terms of both shape and 
interactions, spanning over four subsites S1’, S1, S2 and S4 (Figs. 4b and 4c). SN18 was able 
to use its dihydropyrrolopyrazol ring system as an anchor in order to insert two aromatic 
side-chains along with the aliphatic group into the appropriate sub-pockets in the Mpro 
cavity (Fig. 4c). The anchor in this case is stabilized by forming two strong hydrogen bonds 
with the Ser46 and Gln189 residues in the S2 and S4 pockets, resp. One more hydrogen 
bond is formed between the SN19 phenol group and Glu166 side-chain in the S1 pocket. 
The other polar group, alcohol, present in this structure is partially solvated which prob-
ably contributed to the less penalty paid by SN18 (EGB = 50.9 kcal mol–1) compared to SN02 
(55.2 kcal mol–1, Table II). Furthermore, these polar groups can be utilized in the future as 
polar handles for additional binding groups and hence will help in the lead optimization 
process. To sum up, should SN18 proven to be experimentally active, it can act as a starting 
point for future anti-COVID-19 drugs especially since it has a simple structure with lead-like 
characteristics, providing big room for structural modification and activity improvement 
in the future.

CONCLUSIONS

SARS-CoV-2 main protease protein (Mpro) was evaluated as a COVID-19 drug target in 
this project. The protein was subject to a virtual screening study by the commercially 
available database (TimTec). The resultant top 21 compounds that had a potential robust 
binding mode with the viral protein were selected from various chemical clusters. To fur-
ther enhance the docking results, molecular dynamic studies and MM-GBSA calculations 
were performed to reassure the docking result of the ligands and predict their binding 
energies with the target enzyme. Accordingly, four potential inhibitors were identified 
(SN02, SN18, SN19, SN20) that showed interesting binding modes, along with the lowest 
binding energies of all ligands. Finally, MD simulations for the ligand-protein complexes 
of SN02 and SN18 (trihydroxychroman and pyrazolone derivatives) were run for further 
300 ns and showed high stability inside the Mpro pocket. These results could be the starting 
point for structure-activity relationship studies for the trihydroxychroman and pyrazo-
lone derivatives as potential inhibitors of SARS-CoV-2 Mpro activity.
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