1	https://doi.org/10.2478/acph-2025-0004
2	Meta-analysis review
3	Comparative efficacy and safety of vedolizumab and antitumor necrosis
4	factor alfa in patients with inflammatory bowel diseases: A meta-analysis
5	
6	
7	YAFANG LI
8	JIN DING [*]
9	CHONG LU
10	YIPING HONG
11	QUNYING WANG*
12	ORCIDs Jin Ding - 0009-0002-5333-3557; Qunying Wang - 0009-0004-3580-4022
13	
14	Department of Gastroenterology and Hepatology
15	The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, P.R. China
16	
17	* Correspondence; e-mail addresses: qunyingwang_qyw@hotmail.com (QW);
18	jinding1123@hotmail.com (JD)
19	
20	
21	ABSTRACT
22	This meta-analysis directly compares the efficacy and safety of vedolizumab and tumor necrosis factor-
23	α (TNF- α) inhibitors for patients with inflammatory bowel disease (IBD), contrary to the previous one
24	which provided an indirect comparison. In this meta-analysis, only the studies that directly compared
25	two treatments (vedolizumab and TNF- α inhibitors) to each other (head-to-head approach) were
26	considered. A comprehensive literature search was conducted using the following databases: PubMed,
27	Embase, the Cochrane Library and Web of Science. The pooled estimates of efficacies and safety were
28	calculated as relative risk (RR) and 95 % confidence interval (CI). The presence of bias in the published

material was evaluated using Begg's test. Sensitivity analysis was used to evaluate the pooled results' robustness. In total, 32 eligible studies were finally included. Results showed that the efficacy of vedolizumab was superior to TNF- α inhibitors in clinical remission [1.26, 95 % CI: 1.15-1.39]. Moreover, vedolizumab group showed a reduced incidence of severe adverse events (RR = 0.63, 95 % CI: 0.42–0.94) compared to TNF- α inhibitors. Our results revealed superior efficacy and safety of vedolizumab compared to TNF- α inhibitors, which provided direct evidence for the use of vedolizumab in IBD treatment. Future studies are needed to confirm our findings.

36

37 *Keywords*: vedolizumab, TNF-α inhibitors, inflammatory bowel disease, ulcerative colitis

38

39 Accepted January 20, 2025

40 Published online January 21, 2025

- 41
- 42

INTRODUCTION

Inflammatory bowel disease (IBD) is a group of gastrointestinal disorders with the 43 principal phenotypes of ulcerative colitis (UC) and Crohn's disease (CD) (1, 2). The prevalence 44 of IBD is estimated to be 1.5 million and 2 million cases, resp., in North America and Europe 45 (3). The underlying mechanisms of IBD are complex, involving the interplay of genetic 46 predisposition, environmental factors, and alterations in the intestinal microbiome, which 47impair intestinal barrier function and disrupt immune responses (4). Evidence has shown 48 49 significant inflammatory cell infiltration in the intestinal mucosa of IBD patients (4). The activation of white blood cells in the mucosa is a key process in IBD pathogenesis, mediated 50 by selectins, integrins, chemokine receptors, vascular cell adhesion molecule-1 (VCAM-1), and 51 mucosal addressin cell adhesion molecule-1 (MAdCAM-1) (5). Tumor necrosis factor-α (TNF-52 53 α), a proinflammatory cytokine, plays a role in IBD pathogenesis (6). TNF- α inhibitors were 54 the first class of biological agents approved for IBD treatment, effective against both luminal and extraintestinal manifestations (7). However, these inhibitors can increase susceptibility to 55serious infections and may lead to treatment failures, resulting in reduced drug efficacy (8, 9). 56 57 Vedolizumab is a humanized monoclonal antibody that binds alpha4beta7 (α 4 β 7) integrin

to suppress the adhesion and migration of lymphocytes, and this disruption can decrease the

59 inflammation of the gastrointestinal tract (10). Vedolizumab has been reported to be indicated for UC or CD patients at moderate to severe activity with an inadequate response to TNF- α 60 inhibitors (10). Guidelines suggested that the selection of first-line biological agents for IBD 61 patients should be based on efficacy, safety, cost, clinical factors, patient preference, and likely 62 63 adherence (11). Some studies reported controversial results on the efficacy of TNF- α inhibitors and vedolizumab for treating IBD patients (12, 13). Hahn et al. (9) revealed no significant 64 difference in remission rates between vedolizumab and TNF-a inhibitors in IBD patients, 65 whereas Sablich *et al.* (10) reported the superiority of vedolizumab to TNF- α inhibitors in 66 clinical remission (CR) for IBD patients. In addition, Moens et al. (11) found inconsistent 67 results on the forms of IBD that vedolizumab was superior to TNF-a inhibitor regarding 68 endoscopic remission and treatment persistence in UC, while no difference was found in 69 70 endoscopic remission and treatment persistence in CD.

71Considering that there is limited evidence regarding the comparative efficacy and safety of TNF-a inhibitors and vedolizumab in IBD, systematic reviews and meta-analyses 72 synthesizing data pertaining to biological agents (vedolizumab and TNF-a inhibitors) were 73 needed. A meta-analysis has compared vedolizumab and TNF-a inhibitors for the treatment of 74 IBD patients, although it did not include a direct head-to-head comparison (7). Another meta-75 analysis focused on comparing vedolizumab and TNF- α inhibitors specifically for treating 76 patients with UC, without considering those with CD (5). Therefore, the current meta-analysis 77 is performed in a head-to-head manner to comprehensively evaluate the efficacy and safety of 7879 vedolizumab and TNF- α inhibitors in patients with IBD. Further, the efficacy and safety of these biological agents were assessed in individuals with different forms of IBD. 80

- 81
- 82

SOURCES AND METHODS

This meta-analysis was conducted in accordance with the PRISMA guidelines (14).

84

83

85 *Literature search strategy*

Two researchers independently performed systematic searches of Embase, PubMed, Web of Science, and Cochrane Library up to November 15, 2024, for relevant studies. The search strategies are shown in Supplementary file 1. The third researcher provided the consultation if 89 conflicts existed.

90

91 Inclusion and exclusion criteria

Inclusion criteria were: (i) patients - IBD patients (CD, UC or IBD-unclassified), (ii) 92 intervention – vedolizumab group, (*iii*) control – TNF- α inhibitors group (including etanercept, 93 infliximab, adalimumab, certolizumab, or golimumab), (iv) outcomes - clinical remission, 94 95 clinical response, steroid-free remission (SFR), endoscopic remission (ER), histologic remission (HR), endoscopic improvement (EI), treatment failure (TF; IBD-related surgery or 96 hospitalization), adverse events (AEs, severe AEs, infections, or severe infections), (v) studies 97 98 - cohort studies and randomized controlled trials (RCTs). Exclusion criteria: (i) animal studies 99 or in vitro experiments, (ii) conference abstract, case report, meta-analysis, review, editorial materials, letters, guidelines, news items, patents, (*iii*) not published in English language, (*iv*) 100 articles that have been withdrawn, (v) topic failing to meet the requirements. Details of the 101 definition of outcomes are attached in Supplementary file 2. 102

103

104 *Data extraction*

105 Two researchers independently performed the data extraction. The following 106 characteristics were extracted from the studies: the first author, country, publication year, study 107 design, biological treatment, IBD subtype, sample size, sex, age, follow-up time, diagnosis age, 108 disease duration, Mayo score, and prior-biologic therapy.

109

110 *Quality assessment*

The Newcastle-Ottawa scale (NOS) was employed to assess cohort studies, with evaluation conducted across three dimensions (selection of study population, comparability of the groups and outcome evaluation) (15). The studies included in the analysis were categorized based on their quality, with low-quality studies receiving scores of 1 to 3 points, moderatequality studies scoring between 4 and 6 points, and high-quality studies achieving scores of 7 to 9 points. Higher scores represented a higher quality of studies.

117 The RCTs included in the meta-analysis were assessed using the Jadad scale, which was

evaluated in four dimensions (generation of random sequence, randomization concealment,
blinding, withdrawal, and loss of follow-up) (16, 17). Based on the Jadad scale scores, studies
were categorized into low quality (1–3 points) and high quality (4–7 points), with higher scores
indicating more rigorous and reliable study designs.

122

123 Statistical analysis

A pooled relative risk (RR) with a 95 % confidence interval (CI) was calculated for 124 counting data. A heterogeneity test was conducted to assess the statistical heterogeneity across 125 the included studies by using the I² statistic. The random-effects model was employed to 126 perform meta-analyses if $I^2 \ge 50$ %, and the fixed-effects model was used if $I^2 < 50$ %. A 127 subgroup analysis was conducted to elucidate the source of heterogeneity, based on IBD 128 subtypes. The presence of bias in the published literature was evaluated for the outcomes using 129 Begg's test (18). Sensitivity analysis was conducted to evaluate the reliability of the pooled 130 131results by the removal of the individual study sequentially. All statistical analyses were conducted using Stata15.1 software (StataCorp, College Station, TX, USA), and a p-value of 132less than 0.05 was set as statistically significant. 133

- 134
- 135
- 136

RESULTS AND DISCUSSION

137 Search results and study characteristics

Finally, 5,635 articles were included, of which, 1,930 duplicates were removed. 138Following an initial screening, 3,565 articles were excluded for the following reasons: topics 139 not meeting the requirements (n = 764), reviews or meta-analyses (n = 592), not published in 140 English (n = 6), animal experiments (n = 2), guidelines (n = 14), meeting abstracts, or case 141 reports (n = 1,760), trial registrations records (n = 321), editorial materials, letters or retractions 142 (n = 106). After screening the full text, 108 articles were excluded: data not available (n = 1), 143 outcome not meeting the requirements (n = 29), duplicated subjects (n = 9), or other excluded 144 criteria (n = 69). Finally, 32 eligible studies were included (Fig. 1) (12, 13, 19–48). 145

Table I shows the included studies' characteristics. There were 31 cohort studies and 1 randomized controlled trial involving 5,640 patients in the vedolizumab group and 15,480 148 patients in the TNF-α inhibitors group. According to the NOS scores 19 studies met 7–9 criteria

- 149 (NOS, high quality) while the remaining 12 studies met 6 criteria (NOS, moderate quality). One
- 150 RCT study obtain 6 points by Jadad scale scores and was assessed as high quality.
- 151

152 *Pooled results for the efficacy and safety of vedolizumab and TNF-α inhibitors*

153 Compared to TNF- α inhibitors, vedolizumab was superior in clinical remission (RR = 154 1.26, 95 % CI: 1.15–1.39) (Fig. 2a) for IBD patients. In terms of safety, the pooled results 155 showed that the risk of severe AEs (RR = 0.63, 95 % CI: 0.42–0.94) (Fig. 2b) in the vedolizumab 156 group was lower than in the TNF- α inhibitors group. No significant differences were observed 157 in clinical response, ER, SFR, HR, EI, IBD-related hospitalization, AEs, infection, and severe 158 infection between the vedolizumab group and TNF- α inhibitors group (Table II).

159

160 Subgroup assessment

Table III summarizes the efficacy and safety of vedolizumab and TNF-a inhibitors 161 according to different types of IBD. We also found the superior efficacy of vedolizumab to 162 TNF- α inhibitors in clinical remission (RR = 1.38, 95 % CI: 1.24–1.55), clinical response (RR 163 = 1.19, 95 % CI: 1.05–1.34), SFR (RR = 1.21, 95 % CI: 1.02–1.43) for UC patients. A superior 164 clinical remission (RR = 1.16, 95 % CI: 1.02-1.31) of vedolizumab (vs. TNF- α inhibitors) was 165 also observed in CD patients. Compared to the TNF-α inhibitors, vedolizumab was associated 166 with decreased AEs (RR = 0.70, 95 % CI: 0.54–0.92) and severe AEs (RR = 0.56, 95 % CI: 167 0.34-0.93) in UC patients. 168

169

170 Sensitivity analysis and publication bias

Sensitivity analysis demonstrated that the estimates did not significantly vary when omitting studies one by one (Table II). Publication bias was deemed not to be significant for clinical remission (Z = 1.01, p = 0.327), clinical response (Z = 0.82, p = 0.429), SFR (Z = 1.28, p = 0.219), and AEs (Z = -1.72, p = 0.111) (Table IV).

In the current meta-analysis with 32 studies, vedolizumab yielded better efficacy (clinical remission) and safety (severe AEs) than TNF- α inhibitors in IBD patients. Especially in UC patients, vedolizumab may achieve better performance in clinical remission, clinical response, 178 SFR, AEs, and severe AEs.

179

180 *Implications of the outcomes*

TNF- α inhibitors are the widely used biological agents in the clinical treatment of IBD 181 and can be capable of neutralizing TNF- α (6). A meta-analysis suggested that TNF- α inhibitors 182 monotherapy or combined therapy was the preferred strategy for mucosal healing in IBD 183 184 compared to conventional treatments such as glucocorticoids, immunosuppressants, and salicylic acid formulations (49). Vedolizumab was a selective treatment of IBD by blocking 185 186 white blood cell transport to the intestines (50). TNF- α inhibitors and vedolizumab can both effectively induce and maintain mucosal healing, and have become the first-line biological 187 agents for the treatment of IBD (12). A previous meta-analysis that included 14 studies on IBD 188 demonstrated similar results in the efficacy and safety profiles of infliximab and vedolizumab 189 190 by comparing the occurrence rates of various outcome measures (7). A study by Cholapranee 191 et al. (51) reports that both anti-TNF and anti-integrin biologics (vedolizumab) effectively induced mucosal healing in UC patients compared to placebo. A network meta-analysis ranked 192 infliximab and vedolizumab highest among first-line treatments for inducing remission and 193 mucosal healing in moderate-to-severe UC, based on indirect comparisons (52). Additionally, 194 a head-to-head randomized trial demonstrated that vedolizumab was more effective than 195 adalimumab in achieving clinical response and remission during both induction and 196 maintenance therapy, while also providing a favorable balance of efficacy and safety compared 197 198 to other available UC treatments (53). Consistently, our meta-analysis showed that vedolizumab exerted a better effect on clinical remission than TNF- α inhibitors in IBD patients. 199

Some IBD patients may demonstrate a lack of response or a reduction in response to TNF-200 α inhibitors, which are also linked to higher risks of infections and malignancies (54). Different 201 202 from TNF- α inhibitors, vedolizumab inhibits the interaction between white blood cells and the intestinal vascular system by blocking the binding of integrin and MAdCAM-1 on intestinal 203 endothelial cells to accurately and selectively suppress intestinal inflammation without any 204205 adverse effects of systemic immune suppression (5). Our results indicated that the risk of severe AEs of vedolizumab was lower than that of TNF- α inhibitors in IBD patients. This may be 206 207 explained by the intestinal selective effect of vedolizumab, which did not affect the body's immune function, thereby increasing safety. Further, we found that the efficacy and safety of vedolizumab were superior to TNF- α inhibitors regarding clinical response, SFR, AEs, and severe AEs in patients with UC while not in patients with CD. This finding indicated that vedolizumab may be more suitable for UC patients, and the efficacy and safety of vedolizumab needed to be further explored in CD patients.

While discussing, we highlight that although vedolizumab and TNF- α inhibitors have 213 shown positive efficacy in many patients with IBD, a subset of patients are insensitive to or do 214 not respond well to these treatments. Therefore, the exploration of novel therapeutic approaches 215 216 is critical for these nonresponsive patients. In recent years, JAK1 (Janus kinase 1) inhibitors such as tofacitinib, filgotinib, upadacitinib, etc. (55), and sphingosine 1-phosphate (S1P) 217receptor modulators, such as etrasimod (56), have shown promising clinical effects, providing 218 new options for patients with refractory IBD. In addition, biological agents targeting IL-23/12, 219 220 such as ustekinumab and mirikizumab (57), are also in clinical use, and these agents target different inflammatory pathways through different mechanisms, which may open up new 221 therapeutic prospects for patients who have failed to benefit from traditional therapies. 222 Therefore, future studies need to focus on the long-term efficacy and safety of these new 223 therapies in order to provide a more comprehensive treatment strategy for IBD patients. 224

225

226 *Limitations of the study*

However, it should be noted that this meta-analysis is not without limitations. First, only 227 228 studies published in English language were included, and it may lead to a bias related to language. Secondly, while our subgroup analyses were performed based on different subtypes 229 of IBD, we observed that some outcomes still exhibited heterogeneity. Additionally, prior 230 biologic therapy and variations in treatment protocols may influence the assessment of both 231 efficacy and safety of the treatments. However, due to limitations in the original studies, we are 232 unable to conduct further analyses to explore these factors in more depth. Third, the included 233 studies are all performed in Europe and America. It is not possible to generalize the findings to 234 patients living in other areas. In the future, more RCTs need to be performed to further explore 235 this in patients from the other areas. 236

237

238 CONCLUSIONS We explored the efficacy and safety of vedolizumab and TNF-a inhibitors in patients with 239 240 IBD based on currently available studies. The present meta-analysis provided evidence that vedolizumab could be a preferred treatment option that combines both efficacy and safety for 241 patients with IBD, particularly in those with UC. These results highlight the potential of 242 vedolizumab as a targeted therapy that may reduce the systemic side effects associated with 243 244traditional TNF- α inhibitors. Our findings provide direct evidence for the use of vedolizumab in the treatment of IBD. Future large RCTs with robust designs and multicenter involvement 245 are essential to further validate these findings and explore optimal treatment protocols. 246 247 Acronyms, abbreviations, codes. – AEs – adverse events, $\alpha 4\beta 7$ – alpha4beta7, CD – Crohn's 248 disease, EI - endoscopic improvement, ER - endoscopic remission, HR - histologic remission, IBD -249 250inflammatory bowel disease, MAdCAM-1 - mucosal addressin cell adhesion molecule-1, NOS -Newcastle-Ottawa scale, RCTs - randomized controlled trials, RR - relative risk, S1P - sphingosine 1-251 phosphate, SFR – steroid-free remission, TF – treatment failure, TNF- α – tumor necrosis factor- α , UC 252 - ulcerative colitis, VCAM-1 - vascular cell adhesion molecule-1. 253 Supplementary materials available upon request. 254*Conflict of interests.* – The authors declare no competing interests. 255Funding. - No funding was received. 256 Authors contributions. - Conceptualization and design, Y.L., J.D. and Q.W.; collecting the data, 257 Y.L., C.L. and Y.H.; analysis and interpretation, Y.L., C.L. and Y.H.; writing, original draft preparation, 258Y.L.; writing, review and editing, J.D. and Q.W. All authors have read and agreed to the published 259 version of the manuscript. 260

261

262	REFERENCES
263	1. J. Torres, S. Mehandru, J. F. Colombel and L. Peyrin-Biroulet, Crohn's disease, Lancet
264	389 (10080) (2017) 1741–1755; https://doi.org/10.1016/s0140-6736(16)31711-1
265	2. R. Ungaro, S. Mehandru, P. B. Allen, L. Peyrin-Biroulet and J. F. Colombel, Ulcerative
266	colitis, Lancet 389 (10080) (2017) 1756–1770; https://doi.org/10.1016/s0140-
267	6736(16)32126-2
268	3. S. C. Ng, H. Y. Shi, N. Hamidi, F. E. Underwood, W. Tang, E. I. Benchimol, R. Panaccione,
269	S. Ghosh, J. C. Y. Wu, F. K. L. Chan, J. J. Y. Sung and G. G. Kaplan, Worldwide incidence
270	and prevalence of inflammatory bowel disease in the 21st century: A systematic review of
271	population-based studies, <i>Lancet</i> 390 (10114) (2017) 2769–2778;
272	https://doi.org/10.1016/s0140-6736(1)32448-0
273	4. S. Flynn and S. Eisenstein, Inflammatory bowel disease presentation and diagnosis, Surg.
274	Clin. North Am. 99(6) (2019) 1051–1062; https://doi.org/10.1016/j.suc.2019.08.001
275	5. L. Wang, Z. Jiang, M. Wang, F. Liu and L. Bai, Efficacy and safety of vedolizumab in
276	patients with moderate-to-severe ulcerative colitis: A systematic review and meta-analysis,
277	<i>Chin. J. Gastroenter.</i> 27 (2022) 32–38.
278	6. G. Cui, Q. Fan, Z. Li, R. Goll and J. Florholmen, Evaluation of anti-tnf therapeutic response
279	in patients with inflammatory bowel disease: Current and novel biomarkers, <i>EBioMedicine</i>
280	66 (2021) Article ID 103329 (9 pages); https://doi.org/10.1016/j.ebiom.2021.103329
281	7. L. Peyrin-Biroulet, P. Arkkila, A. Armuzzi, S. Danese, J. Guardiola, J. Jahnsen, C. Lees, E.
282 283	Louis, M. Lukáš, W. Reinisch, X. Roblin, M. Jang, H. G. Byun, DH. Kim, S. J. Lee and
283 284	R. Atreya, Comparative efficacy and safety of infliximab and vedolizumab therapy in patients with inflammatory bowel disease: A systematic review and meta-analysis, <i>BMC</i>
284 285	<i>Gastroenterol.</i> 22 (1) (2022) Article ID 291 (16 pages); https://doi.org/10.1186/s12876-
285 286	022-02347-1
287 287	8. V. Billioud, A. C. Ford, E. D. Tedesco, J. F. Colombel, X. Roblin and L. Peyrin-Biroulet,
288	Preoperative use of anti-the therapy and postoperative complications in inflammatory
289	bowel diseases: A meta-analysis, J. Crohns Colitis 7(11) (2013) 853-867;
290	https://doi.org/10.1016/j.crohns.2013.01.014
291	9. G. Mocci, M. Marzo, A. Papa, A. Armuzzi and L. Guidi, Dermatological adverse reactions
292	during anti-TNF treatments: Focus on inflammatory bowel disease, J. Crohns Colitis 7(10)
293	(2013) 769-779; https://doi.org/10.1016/j.crohns.2013.01.009
294	10. B. Qiu, J. X. Liang and C. Li, Efficacy and safety of vedolizumab for inflammatory bowel
295	diseases: A systematic review and meta-analysis of randomized controlled trials, Medicine
296	(Baltimore) 101(40) (2022) e30590; https://doi.org/10.1097/md.000000000030590
297	11. C. A. Lamb, N. A. Kennedy, T. Raine, P. A. Hendy, P. J. Smith, J. K. Limdi, B. Hayee, M.
298	C. E. Lomer, G. C. Parkes, C. Selinger, K. J. Barrett, R. J. Davies, C. Bennett, S. Gittens,
299	M. G. Dunlop, O. Faiz, A. Fraser, V. Garrick, P. D. Johnston, M. Parkes, J. Sanderson, H.
300	Terry, D. R. Gaya, T. H. Iqbal, S. A. Taylor, M. Smith, M. Brookes, R. Hansen and A. B.
301	Hawthorne, British society of gastroenterology consensus guidelines on the management
302	of inflammatory bowel disease in adults, Gut 68 (Suppl. 3) (2019) s1-s106;
303	https://doi.org/10.1136/gutjnl-2019-318484
304 205	12. G. D. Hahn, J. F. LeBlanc, P. A. Golovics, P. Wetwittayakhlang, A. Qatomah, A. Wang, L.
305	Boodaghians, J. Liu Chen Kiow, M. Al Ali, G. Wild, W. Afif, A. Bitton, P. L. Lakatos and

- T. Bessissow, Effectiveness, safety, and drug sustainability of biologics in elderly patients
 with inflammatory bowel disease: A retrospective study, *World J. Gastroenterol.* 28(33)
 (2022) 4823–4833; https://doi.org/10.3748/wjg.v28.i33.4823
- R. Sablich, M. T. Urbano, M. Scarpa, F. Scognamiglio, A. Paviotti and E. Savarino,
 Vedolizumab is superior to infliximab in biologic naïve patients with ulcerative colitis, *Sci. Rep.* 13(1) (2023) Article ID 1816 (10 pages); https://doi.org/10.1038/s41598-023-289073
- 14. L. Shamseer, D. Moher, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P. Shekelle and L.
 A. Stewart, Preferred reporting items for systematic review and meta-analysis protocols
 (PRISMA-P) 2015: Elaboration and explanation, *BMJ* 350 (2015) g7647 (25 pages);
 https://doi.org/10.1136/bmj.g7647
- A. Stang, Critical evaluation of the Newcastle-Ottawa scale for the assessment of the
 quality of nonrandomized studies in meta-analyses, *Eur. J. Epidemiol.* 25(9) (2010) 603–
 605; https://doi.org/10.1007/s10654-010-9491-z
- 16. A. R. Jadad, R. A. Moore, D. Carroll, C. Jenkinson, D. J. M. Reynolds, D. J. Gavaghan and
 H. J. McQuay, Assessing the quality of reports of randomized clinical trials: Is blinding
 necessary?, *Control. Clin. Trials* 17(1) (1996) 1–12; https://doi.org/10.1016/01972456(95)00134-4
- 17. X. Chen, M. Lu, W. Xu, X. Wang, M. Xue, J. Dai, Z. Zhang and G. Chen, Treatment of pediatric femoral shaft fractures with elastic stable intramedullary nails versus external fixation: A meta-analysis, *Orthop. Traumatol. Surg. Res.* **106**(7) (2020) 1305–1311; https://doi.org/10.1016/j.otsr.2020.06.012
- 18. J. A. C. Sterne, A. J. Sutton, J. P. A. Ioannidis, N. Terrin, D. R. Jones, J. Lau, J. Carpenter, 328 G. Rücker, R. M. Harbord, C. H. Schmid, J. Tetzlaff, J. J. Deeks, J. Peters, P. Macaskill, G. 329 Schwarzer, S. Duval, D. G. Altman, D. Moher and J. P. Higgins, Recommendations for 330 examining and interpreting funnel plot asymmetry in meta-analyses of randomised 331 BMJ 343 Article controlled trials, (2011)ID d4002 (8 pages); 332 https://doi.org/10.1136/bmj.d4002 333
- 19. T. Adar, D. Faleck, S. Sasidharan, K. Cushing, N. Z. Borren, N. Nalagatla, R. Ungaro, W. 334 Sy, S. C. Owen, A. Patel, B. L. Cohen and A. N. Ananthakrishnan, Comparative safety and 335 effectiveness of tumor necrosis factor α antagonists and vedolizumab in elderly ibd patients: 336 337 А multicentre study, Aliment. Pharmacol. Ther. **49**(7) (2019) 873-879; https://doi.org/10.1111/apt.15177 338
- 20. C. Allamneni, K. Venkata, H. Yun, F. Xie, L. DeLoach and T. A. Malik, Comparative effectiveness of vedolizumab vs. Infliximab induction therapy in ulcerative colitis:
 Experience of a real-world cohort at a tertiary inflammatory bowel disease center, *Gastroenterol. Res.* 11(1) (2018) 41–45; https://doi.org/10.14740/gr934w
- M. Bohm, R. Xu, Y. Zhang, S. Varma, M. Fischer, G. Kochhar, B. Boland, S. Singh, R.
 Hirten, R. Ungaro, E. Shmidt, K. Lasch, V. Jairaith, D. Hudesman, S. Chang, D. Lukin, A.
 Swaminath, B. E. Sands, J. F. Colombel, S. Kane, E. V. Loftus, Jr., B. Shen, C. A. Siegel,
 W. J. Sandborn and P. S. Dulai, Comparative safety and effectiveness of vedolizumab to
 tumour necrosis factor antagonist therapy for crohn's disease, *Aliment. Pharmacol. Ther.*52(4) (2020) 669-681; https://doi.org/10.1111/apt.15921
- 22. B. Bokemeyer, S. Plachta-Danielzik, R. di Giuseppe, P. Efken, W. Mohl, M. Hoffstadt, T.

- 350 Krause, A. Schweitzer, E. Schnoy, R. Atreya, N. Teich, L. Trentmann, R. Ehehalt, P. Hartmann and S. Schreiber, Real-world effectiveness of vedolizumab vs anti-tnf in 351 biologic-naïve crohn's disease patients: A 2-year propensity-score-adjusted analysis from 352 the vedoibd-study, Inflamm. Bowel 30(5) (2024)746-756; Dis. 353 https://doi.org/10.1093/ibd/izad138 354
- B. Bokemeyer, S. Plachta-Danielzik, R. di Giuseppe, P. Efken, W. Mohl, T. Krause, M.
 Hoffstadt, R. Ehehalt, L. Trentmann, A. Schweitzer, P. Jessen, P. Hartmann and S. Schreiber,
 Real-world effectiveness of vedolizumab compared to anti-tnf agents in biologic-naïve
 patients with ulcerative colitis: A two-year propensity-score-adjusted analysis from the
 prospective, observational vedo(ibd) -study, *Aliment. Pharmacol. Ther.* 58(4) (2023) 429–
 442; https://doi.org/10.1111/apt.17616
- 24. B. Bressler, A. Yarur, M. S. Silverberg, M. Bassel, E. Bellaguarda, C. Fourment, A.
 Gatopoulou, P. Karatzas, U. Kopylov, G. Michalopoulos, S. Michopoulos, U. Navaneethan,
 D. T. Rubin, J. Siffledeen, A. Singh, K. Soufleris, D. Stein, D. Demuth and G. J. Mantzaris,
 Vedolizumab and anti-tumour necrosis factor α real-world outcomes in biologic-naïve
 inflammatory bowel disease patients: Results from the evolve study, *J. Crohns Colitis*15(10) (2021) 1694–1706; https://doi.org/10.1093/ecco-jcc/jjab058
- 25. A. Cassinotti, N. Mezzina, A. De Silvestri, D. Di Paolo, M. V. Lenti, C. Bezzio, D. Stradella,
 M. Mauri, V. Zadro, C. Ricci, V. Casini, E. Radice, A. Massari, G. Maconi, S. Saibeni, F.
 Caprioli, R. Tari, M. Fichera, C. C. Cortelezzi, M. Parravicini, C. Tinelli, P. A. Testoni, F.
 Pace, S. Segato, P. Invernizzi, P. Occhipinti, G. Manes, A. Di Sabatino, L. Pastorelli, M.
 Vecchi and S. Ardizzone, Continuous clinical remission with biologics in ulcerative colitis:
 The 'aurora' comparison study, *Eur. J. Gastroenterol. Hepatol.* 34(12) (2022) 1238–1246;
 https://doi.org/10.1097/meg.00000000002443
- R. S. Dalal, E. L. McClure, J. Marcus and J. R. Allegretti, Comparative long-term drug
 survival of vedolizumab, adalimumab, and infliximab in biologic-naïve patients with
 ulcerative colitis, *Dig. Dis. Sci.* 68(1) (2023) 223–232; https://doi.org/10.1007/s10620022-07472-1
- 27. F. D'Amico, L. Massimino, G. Palmieri, A. Dal Buono, R. Gabbiadini, B. Caron, P. Moreira,
 I. Silva, M. Bosca-Watts, T. Innocenti, G. Dragoni, C. Bezzio, A. Zilli, F. Furfaro, S.
 Saibeni, M. Chaparro, M. J. García, G. Michalopoulos, N. Viazis, G. J. Mantzaris, P. Ellul,
 J. P. Gisbert, F. Magro, L. Peyrin-Biroulet, A. Armuzzi, F. Ungaro, S. Danese, G. Fiorino
 and M. Allocca, An international multicentre study of switching from intravenous to
 subcutaneous infliximab and vedolizumab in inflammatory bowel diseases: The time study, *Eur. J. Clin. Invest.* 54(11) (2024) e14283; https://doi.org/10.1111/eci.14283
- 28. R. Davis, P. McParland, S. Dodd, D. Storey, C. Probert, P. Collins, T. Skouras, A. Steel, E.
 Derbyshire, M. Dibb and S. Subramanian, Comparative effectiveness of antitumour necrosis factor agents and vedolizumab in ulcerative colitis, *Eur. J. Gastroenterol. Hepatol.*388 31(6) (2019) 661–667; https://doi.org/10.1097/meg.00000000001395
- A. Favale, S. Onali, F. Caprioli, D. Pugliese, A. Armuzzi, F. S. Macaluso, A. Orlando, A.
 Viola, W. Fries, A. Rispo, F. Castiglione, G. Mocci, F. Chicco, P. Usai, E. Calabrese, L.
 Biancone, G. Monteleone and M. C. Fantini, Comparative efficacy of vedolizumab and
 adalimumab in ulcerative colitis patients previously treated with infliximab, *Inflamm. Bowel Dis.* 25(11) (2019) 1805–1812; https://doi.org/10.1093/ibd/izz057

- 394 30. A.-L. Gagnon, W. Beauchesne, L. Tessier, C. David, D. Berbiche, A. Lavoie, A. Michaud-Herbst and K. Tremblay, Adalimumab, infliximab, and vedolizumab in treatment of 395 ulcerative colitis: A long-term retrospective study in a tertiary referral center, Crohn's 396 Colitis 360 otab049 397 **3**(4) (2021)Article ID (9 pages); https://doi.org/10.1093/crocol/otab049 398
- 31. Z. Huang, J. Tang, R. Wu, S. Long, W. Chen, T. Lu, Q. Xia, Y. Wu, H. Yang, Q. Yang, Z. Huang, Q. Guo, M. Li, X. Gao and K. Chao, Comparison of clinical and endoscopic efficacy between vedolizumab and infliximab in bio-naïve patients with ulcerative colitis:
 A multicenter, real-world study, *Therap. Adv. Gastroenterol.* 17 (2024) 1–13; https://doi.org/10.1177/17562848241281218
- M. Hupé, P. Rivière, S. Nancey, X. Roblin, R. Altwegg, J. Filippi, M. Fumery, G. Bouguen,
 L. Peyrin-Biroulet, A. Bourreille, L. Caillo, M. Simon, F. Goutorbe and D. Laharie,
 Comparative efficacy and safety of vedolizumab and infliximab in ulcerative colitis after
 failure of a first subcutaneous anti-TNF agent: A multicentre cohort study, *Aliment. Pharmacol. Ther.* 51(9) (2020) 852–860; https://doi.org/10.1111/apt.15680
- 33. T. Innocenti, J. Roselli, E. N. Lynch, P. Apolito, L. Parisio, S. Bagnoli, G. Macrì, F. Rogai,
 M. Tarocchi, S. Milani, A. Galli, M. Milla and G. Dragoni, Infectious risk of vedolizumab
 compared with other biological agents in the treatment of inflammatory bowel disease, *Eur. J. Gastroenterol. Hepatol.* 33(1S) (2021) e574–e579;
 https://doi.org/10.1097/meg.0000000002166
- M. J. Kim, Y. J. Kim, D. Jeong, S. Kim, S. Hong, S. H. Park and K. W. Jo, Comparative
 risk of serious infections and tuberculosis in korean patients with inflammatory bowel
 disease treated with non-anti-TNF biologies or anti-TNF-α agents: A nationwide
 population-based cohort study, *Therap. Adv. Gastroenterol.* **17** (2024) 1–14;
 https://doi.org/10.1177/17562848241265013
- M. D. Long, T. W. Smith, M. Dibonaventura, D. Gruben, D. Bargo, L. Salese and D. Quirk,
 Real-world effectiveness of advanced therapies among patients with moderate to severe
 ulcerative colitis in the united states, *Inflamm. Bowel Dis.* 26(6) (2020) 941–948;
 https://doi.org/10.1093/ibd/izz204
- 36. D. Lukin, D. Faleck, R. Xu, Y. Zhang, A. Weiss, S. Aniwan, S. Kadire, G. Tran, M. Rahal, 423 A. Winters, S. Chablaney, J. L. Koliani-Pace, J. Meserve, J. P. Campbell, G. Kochhar, M. 424 425 Bohm, S. Varma, M. Fischer, B. Boland, S. Singh, R. Hirten, R. Ungaro, K. Lasch, E. Shmidt, V. Jairath, D. Hudesman, S. Chang, A. Swaminath, B. Shen, S. Kane, E. V. Loftus, 426 Jr., B. E. Sands, J. F. Colombel, C. A. Siegel, W. J. Sandborn and P. S. Dulai, Comparative 427 safety and effectiveness of vedolizumab to tumor necrosis factor antagonist therapy for 428 ulcerative colitis, Clin. Gastroenterol. *Hepatol.* 20(1) (2022)126–135; 429 https://doi.org/10.1016/j.cgh.2020.10.003 430
- 431 37. F. S. Macaluso, M. Ventimiglia, W. Fries, A. Viola, M. Cappello, B. Scrivo, A. Magnano,
 432 D. Pluchino, S. Camilleri, S. Garufi, R. D. Mitri, F. Mocciaro, G. Magrì, C. Ferracane, M.
 433 Citrano, F. Graziano, C. Bertolami, S. Renna, R. Orlando, G. Rizzuto, M. Cottone and A.
 434 Orlando, A propensity score weighted comparison of vedolizumab, adalimumab, and
 435 golimumab in patients with ulcerative colitis, *Dig. Liver Dis.* 52(12) (2020) 1461–1466;
 436 https://doi.org/10.1016/j.dld.2020.06.014
- 437 38. F. S. Macaluso, M. Ventimiglia, W. Fries, A. Viola, A. Sitibondo, M. Cappello, B. Scrivo,

- 438 A. Busacca, A. C. Privitera, S. Camilleri, S. Garufi, R. Di Mitri, F. Mocciaro, N. Belluardo, E. Giangreco, C. Bertolami, S. Renna, R. Orlando, G. Rizzuto, M. Cottone and A. Orlando, 439 A propensity score weighted comparison of vedolizumab and adalimumab in crohn's 440 disease, Gastroenterol. Hepatol. 105–111; J_{\cdot} **36**(1) (2021)441 https://doi.org/10.1111/jgh.15107 442
- 39. R. P. Meng, B. B. Huang, Y. L. Wei, L. Lyu, H. Yang, C. Liu, H. L. Zhou, X. P. Liao, J. Y.
 Zhou and X. Xie, Effectiveness and safety of vedolizumab and infliximab in biologic-naïve
 patients with moderate-to-severe ulcerative colitis: A multicenter, retrospective cohort
 study, J. Dig. Dis. 25(4) (2024) 230–237; https://doi.org/10.1111/1751-2980.13270
- 40. A. Moens, B. Verstockt, D. Alsoud, J. Sabino, M. Ferrante and S. Vermeire, Translating
 results from varsity to real world: Adalimumab vs vedolizumab as first-line biological in
 moderate to severe IBD, *Inflamm. Bowel Dis.* 28(8) (2022) 1135–1142;
 https://doi.org/10.1093/ibd/izab257
- 41. B. S. Pabla, C. Alex Wiles, J. C. Slaughter, E. A. Scoville, R. L. Dalal, D. B. Beaulieu, D.
 A. Schwartz and S. N. Horst, Safety and efficacy of vedolizumab versus tumor necrosis
 factor α antagonists in an elderly ibd population: A single institution retrospective
 experience, *Dig. Dis. Sci.* 67(7) (2022) 3129–3137; https://doi.org/10.1007/s10620-02107129-5
- 42. H. Patel, D. Latremouille-Viau, R. Burne, S. Shi and S. Adsul, Comparison of real-world
 treatment outcomes with vedolizumab versus infliximab in biologic-naive patients with
 inflammatory bowel disease, *Crohn's Colitis 360* 1(2) (2019) Article ID otz022 (9 pages);
 https://doi.org/10.1093/crocol/otz022
- 43. R. Roberti, L. F. Iannone, C. Palleria, C. De Sarro, R. Spagnuolo, M. A. Barbieri, A. Vero,
 A. Manti, V. Pisana, W. Fries, G. Trifirò, M. D. Naturale, T. Larussa, A. E. De Francesco,
 V. Bosco, E. Donato di Paola, R. Citraro, F. Luzza, L. Bennardo, S. Rodinò, P. Doldo, E.
 Spina, E. Russo and G. De Sarro, Safety profiles of biologic agents for inflammatory bowel
 diseases: A prospective pharmacovigilance study in southern italy, *Curr. Med. Res. Opin.*36(9) (2020) 1457–1463; https://doi.org/10.1080/03007995.2020.1786681
- 44. B. E. Sands, L. Peyrin-Biroulet, E. V. Loftus, Jr., S. Danese, J. F. Colombel, M. Törüner, L.
 Jonaitis, B. Abhyankar, J. Chen, R. Rogers, R. A. Lirio, J. D. Bornstein and S. Schreiber,
 Vedolizumab versus adalimumab for moderate-to-severe ulcerative colitis, *N. Engl. J. Med.*381(13) (2019) 1215–1226; https://doi.org/10.1056/NEJMoa1905725
- 470
 45. M. Shehab, A. Alfadhli, I. Abdullah, W. Alostad, A. Marei and F. Alrashed, Effectiveness
 471
 472 of biologic therapies in achieving treatment targets in inflammatory bowel disease; real472 world data from the Middle East (ENROLL study), *Front. Pharmacol.* 15 (2024) Article
 473 ID 1388043 (8 pages); https://doi.org/10.3389/fphar.2024.1388043
- 474
 46. S. Singh, A. T. Iversen, K. H. Allin and T. Jess, Comparative outcomes and safety of
 475 vedolizumab vs tumor necrosis factor antagonists for older adults with inflammatory bowel
 476 diseases, *JAMA Netw. Open* 5(9) (2022) e2234200;
 477 https://doi.org/10.1001/jamanetworkopen.2022.34200
- 478 47. M. Tallarico, C. Palleria, L. Ruffolo, R. Spagnuolo, M. D. Naturale, A. E. De Francesco, C.
 479 De Sarro, R. Romeo, R. Citraro, P. Doldo, L. Abenavoli, L. Gallelli, F. Luzza, A. Leo and
 480 G. De Sarro, Biologics for inflammatory bowel disease in clinical practice: A Calabria
 481 (Southern Italy) prospective pharmacovigilance study, *Pharmaceutics* 14(11) (2022)

- 482 Article ID 2449 (11 pages); https://doi.org/10.3390/pharmaceutics14112449
- 48. K. Wagner, T. M. Müller, F. Vitali, S. Fischer, S. Haberkamp, R. Rouse-Merkel, R. Atreya,
 M. F. Neurath and S. Zundler, Treatment trajectories and outcomes in inflammatory bowel
 disease: a tertiary single-centre experience, *Therap. Adv. Gastroenterol.* 17 (2024) 1–14;
 https://doi.org/10.1177/17562848241284051
- 487 49. C. Guo, K. Wu, X. Liang, Y. Liang and R. Li, Infliximab clinically treating ulcerative colitis:
 488 A systematic review and meta-analysis, *Pharmacol. Res.* 148 (2019) Article ID 104455;
 489 https://doi.org/10.1016/j.phrs.2019.104455
- 50. E. V. Loftus, Jr., B. G. Feagan, R. Panaccione, J. F. Colombel, W. J. Sandborn, B. E. Sands,
 S. Danese, G. D'Haens, D. T. Rubin, I. Shafran, A. Parfionovas, R. Rogers, R. A. Lirio and
 S. Vermeire, Long-term safety of vedolizumab for inflammatory bowel disease, *Aliment*. *Pharmacol. Ther.* 52(8) (2020) 1353–1365; https://doi.org/10.1111/apt.16060
- 494 51. A. Cholapranee, G. S. Hazlewood, G. G. Kaplan, L. Peyrin-Biroulet and A. N.
 495 Ananthakrishnan, Systematic review with meta-analysis: Comparative efficacy of
 496 biologics for induction and maintenance of mucosal healing in crohn's disease and
 497 ulcerative colitis controlled trials, *Aliment. Pharmacol. Ther.* 45(10) (2017) 1291–1302;
 498 https://doi.org/10.1111/apt.14030
- 52. V. Jairath, K. Chan, K. Lasch, S. Keeping, C. Agboton, A. Blake and H. Patel, Integrating efficacy and safety of vedolizumab compared with other advanced therapies to assess net clinical benefit of ulcerative colitis treatments: A network meta-analysis, *Expert Rev. Gastroenterol. Hepatol.* **15**(6) (2021) 711–722; https://doi.org/10.1080/17474124.2021.1880319
- 53. S. Singh, M. Fumery, W. J. Sandborn and M. H. Murad, Systematic review with network
 meta-analysis: First- and second-line pharmacotherapy for moderate-severe ulcerative
 colitis, *Aliment. Pharmacol. Ther.* 47(2) (2018) 162–175;
 https://doi.org/10.1111/apt.14422
- 54. M. E. de Jong, L. J. T. Smits, B. van Ruijven, N. den Broeder, M. G. V. M. Russel, T. E. H.
 Römkens, R. L. West, J. M. Jansen and F. Hoentjen (on behalf of IBDREAM), Increased
 discontinuation rates of anti-TNF therapy in elderly inflammatory bowel disease patients, *J. Crohn's Colitis* 14(7) (2020) 888–895; https://doi.org/10.1093/ecco-jcc/jjaa012
- 51255. C. Harris and J. R. F. Cummings, JAK1 inhibition and inflammatory bowel disease,513*Rheumatology* (Oxford) **60**(Suppl. 2) (2021) ii45–ii51;514https://doi.org/10.1093/rheumatology/keaa896
- 56. W. J. Sandborn, S. Vermeire, L. Peyrin-Biroulet, M. C. Dubinsky, J. Panes, A. Yarur, T.
 Ritter, F. Baert, S. Schreiber, S. Sloan, F. Cataldi, K. Shan, C. J. Rabbat, M. Chiorean, D.
 C. Wolf, B. E. Sands, G. D'Haens, S. Danese, M. Goetsch and B. G. Feagan, Etrasimod as
- induction and maintenance therapy for ulcerative colitis (elevate): Two randomised,
 double-blind, placebo-controlled, phase 3 studies, *Lancet* 401(10383) (2023) 1159–1171;
 https://doi.org/10.1016/s0140-6736(23)00061-2
- 57. Z. Tian, Q. Zhao and X. Teng, Anti-IL23/12 agents and JAK inhibitors for inflammatory
 bowel disease, *Front. Immunol.* 15 (2024) Article ID 1393463 (8 pages);
 https://doi.org/10.3389/fimmu.2024.1393463
- 524
- 525

Treatment	IBD subtype	Sample size (<i>n</i>)	Age (year)	Follow-up (month)	Disease duration	Quality	Outcome	Reference	Country
Vedolizumab	CD, UC, unclassified	103	68 (6) *	> 12	16 (14) *	- 8	CR, TF, AEs	19/2019	USA
TNF antagonists	IBD	131	68 (6) *	~ 12	13 (15) *	0			USA
Vedolizumab	UC	32	54.5 (17.9) *	3.75		6	Clinical response	20/2018	USA
Infliximab	00	27	42.3 (18.5) *	3.10	-	0			USA
Vedolizumab		659	25.59 (13.81) *		12 (13) *			21/2020	
Infliximab	CD	305	27.8 (13.76) *	> 12	3 (10) *	6	AEs		USA
TNF antagonists		302	28.99 (14.53) *		6 (17) *				
Vedolizumab	UC	380	45.7 (17.4) *						
TNF antagonists	00	224	39.6 (15.7) *	> 24		6	CR, clinical response,	24/2021	Canada
Vedolizumab	CD	218	51.7 (16.8) *	- 24		0	AEs		Canada
TNF antagonists	CD	273	39.7 (14.8) *						
Vedolizumab	UC	385	40.8 (13.7) *	17	7.3 (7.2) *	6	CR, clinical response,	44/2019	USA
Adalimumab	00	386	40.5 (13.4) *		6.4 (6.0) *		SFR, HR, TF, EI, AEs		USA
Vedolizumab		142	47 (16.9) *	XV	10 (4,14) ^	7	CR, ER, SFR, EI, AEs	25/2022	
Adalimumab	UC	90	42.6 (14.8) *	13	10.1 (3, 14.8) ^				Italy
Golimumab		79	42.2 (13.2) *		10.4 (2, 15) ^				
Vedolizumab		195	48 (33) ^	19.57	7 (16) ^		7 SFR	26/2023	
Adalimumab	UC	278	36 (24) ^	9.55	5 (9) ^	7			USA
Infliximab		332	34 (25) ^	15.78	3 (9) ^				
Vedolizumab	UC	97	46 (32.0, 57.0) ^	11.4		8	AEs	29/2019	Italy
Adalimumab	00	64	46.5 (30.0, 56.0) ^	11.7	_	0	ALS	2)/2017	Italy
Vedolizumab		39							
Adalimumab	UC	58	_	-	_	8	AEs	30/2021	Canada
Infliximab		68							
Vedolizumab		23							
Adalimumab	CD, UC	57	_	> 18	-	7	CR, clinical response	12/2022	Brazil
Infliximab		42							
Vedolizumab	UC	71	43 (17.3) *	21	9.09	6	CR, clinical response,	32/2020	France
Infliximab		154	42.5 (16.6) *	33	6.38	0	AEs	32/2020	Tance

Vedolizumab		85							
TNF antagonists	CD, UC	447		-	—	7	AEs	33/2021	Italy
Vedolizumab		377		7.6	12.0 (10.5) *				
TNF antagonists	CD, UC	377		- 7.6		- 8	TF, AEs	46/2022	USA
Vedolizumab		103	44.4 (15.7) *	> 12	12.5 (10.2) * 1.9 (1.1) *				
Adalimumab		1291	44.8 (14.4) *		1.4 (1.0) *		TF	35/2020	
Infliximab	UC	810	43.8 (15.8) *		1.3 (1.1) *	6			USA
Golimumab		127	45.3 (15.2) *		1.5 (0.9) *				
Vedolizumab		454	42.08 (17.13) *		6 (11) *				
Infliximab	UC	165	38.47 (15.97) *	11.1	3 (6) *	6	CR, SFR, AEs	36/2020	USA
TNF antagonists		103	40.11 (15.28) *		6 (11) *	_			
Vedolizumab		187	55.0 (40.3, 66.9) ^	11.9	9.3 (4.0, 16.0) ^		CR, SFR	37/2020	
Adalimumab	UC	168	42.0 (33.0, 53.8) ^		8.0 (3.0, 14.1) ^	6			Italy
Golimumab		108	49.0 (39.0, 56.10) ^		9.5 (4.0, 16.0) ^				
Vedolizumab	CD	277	52.0 (37.0, 64.0) ^	14	10.0 (6.0,18.0) ^		CD CED	20/2021	T, 1
Adalimumab	UC	308	40.8 (28.5, 52.7) ^	XVJ	6.0 (2.0, 12.0) ^	6	CR, SFR	38/2021	Italy
Vedolizumab	LIC .	63			5 (1,11) ^	5 (1,11) ^ 3 5 (1 7 5) ^	CR, ER, SFR, EI, AEs	40/2022	
Adalimumab	UC	46		13	3.5 (1,7.5) ^				D 1 '
Vedolizumab	CD	33		13	4 (1, 11) ^	7			Belgium
Adalimumab	CD -	53			3 (0,17) ^				
Vedolizumab	CD, UC, unclassified	108		15.24	15.5 (5. 0,30) ^	7		41/2022	
TNF antagonists	IBD	104		17.16	10 (2, 25) ^	7	ER, HR	41/2022	USA
Vedolizumab		542	51.4 (16.6) *		4.21	0	TE	42/2010	Consta
Infliximab	UC, CD	1179	51.4 (16.6) *		4.31	8	TF	42/2019	Canada
Vedolizumab	UC	42	44.9 (19.2) *	10		(CR, clinical response,	28/2010	UK
TNF antagonists	UC	97	40.4 (17.3) *	12	_	6	SFR	28/2019	UK
Vedolizumab		73	61.0 (16.9) *	18					
Infliximab	CD, UC	308	42.0 (14.7) *	21.1		7	AEs	43/2020	T. 1
Adalimumab	CD, UC	215	44.1 (14.3) *	19	_	7		43/2020	Italy
Golimumab		26 48.1 (14.5) * 19.3							
Vedolizumab		32		11.25	8 (8.56) *				

Infliximab	UC	50	_	9.25	9.5 (9.29) *	6	CR, clinical response,	13/2023	Italy
Vedolizumab		17	52.5 (15.5) *		_	Ç,	AEs	47/2022	
Infliximab	CD, UC	214	42.5 (14.1) *						Italy
Golimumab	CD, UC	37	42.6 (13.3) *						Italy
Adalimumab		89	42.2 (14.0) *						
Vedolizumab	CD	86	39.8 (29.3-53.9) ^	79.2	- 2	7	CR, clinical response,	22/2024	Germany
TNF antagonists	CD	241	40.7 (29.4–54.8) ^	54	L L		SFR, AEs	22/2024	Germany
Vedolizumab	UC	182	39.6 (28.3-53.2) ^	57.6			CR, clinical response,	23/2023	Germany
TNF Antagonists	00	132	39.6 (28.3-53.2) ^	52.8		6	SFR, AEs		Germany
Vedolizumab	CD, UC	73	43.9 (15.0) *	144	≥	8	CR, ER, TF	27/2024	Italy
infliximab	сЬ, 6С	158	43.7 (15.0)						Italy
Vedolizumab	UC	117	40.7 (15.3) *	53.7	13	7	CR, clinical response, ER, SFR, AEs	31/2024	China
infliximab	00	82	41.1 (14.6) *	59.9	4.3	/			China
Vedolizumab	CD, UC	284	27 (21 41) ^		1.55 (1.05) *	7	AEs	34/2024	Korea
TNF antagonists	сЬ, 6С	4902	27 (21–41) ^		1.55 (1.05)	/		J7/2027	Korea
Vedolizumab	UC	57	49 (33-56) ^	36	4.3	8	CR, ER, SFR, AEs	39/2024	China
infliximab	00	65	41 (29–49) ^	24	4.5	0	CK, EK, SFK, AES	39/2024	Cillia
Vedolizumab	CD, UC	53	34.12 (10.66) *		4.3	6	ER, SFR, TF	45/2024	Kuwait
TNF antagonists	сь, ос	294	57.12 (10.00)		т. <i>э</i>	0	ER, SER, H	TJ/2024	Kuwait
Vedolizumab	CD, UC	51			2.38	7	CR, ER, SFR	48/2024	Germany
TNF antagonists	CD, UC	414			2.30	/	OR, ER, SI'K	70/2024	Germany

AEs - adverse events, EI - endoscopic improvement, CD - Crohn's disease, CR - clinical remission, ER - endoscopic remission, HR - histologic remission, RCT - randomized controlled trial; SFR - steroid-free remission, TF - treatment failure,

TNF - tumour necrosis factor; UC - ulcerative colitis

* - mean (SD); ** - median (IQR); ^ - median (Q1, Q3)

	Outcome	Number of studies	RR (95 % CI)	р	I^2
	Clinical remission				
	Overall	16	1.26 (1.15, 1.39)	< 0.001	52.9
	Sensitivity analysis		1.26 (1.15, 1.39)		
	Clinical response				
	Overall	11	1.10 (0.99, 1.22)	0.090	83.5
	Sensitivity analysis		1.10 (0.99, 1.22)		
	ER				
	Overall	8	1.10 (0.87, 139)	0.449	55.3
	Sensitivity analysis		1.10 (0.87, 1.39)		
	SFR				
	Overall	14	1.16 (0.99, 1.36)	0.072	76.6
	Sensitivity analysis		1.16 (0.99, 1.36)		
	HR				
	Overall	2	1.75 (0.51, 5.93)	0.372	91.7
	Sensitivity analysis		1.75 (0.51, 5.93)		
	EI				
	Overall	3	1.18 (0.86, 1.63)	0.309	77.4
	Sensitivity analysis		1.18 (0.86, 1.63)		
	IBD-related surgery	•			
	Overall	4	1.30 (1.04, 1.63)	0.024	46.3
	Sensitivity analysis		1.30 (1.04, 1.63)		
	IBD-related hospitalization				
	Overall	6	0.96 (0.82, 1.13)	0.625	46.5
	Sensitivity analysis	5	0.96 (0.82, 1.13)		
	AEs				
	Overall	13	0.81 (0.65, 1.01)	0.057	52.6
	Sensitivity analysis		0.81 (0.65, 1.01)		
	Severe AEs				
	Overall	5	0.63 (0.42, 0.94)	0.023	71.6
	Sensitivity analysis		0.63 (0.42, 0.94)		
	Infection				
	Overall	4	0.92 (0.66, 1.27)	0.595	0.0
	Sensitivity analysis		0.92 (0.66, 1.27)		
-	Severe infection				
	Severe infection Overall	5	0.83 (0.49, 1.40)	0.479	67.6

Table II. Pooled results for efficacy and safety of vedolizumab vs. TNF- α inhibitors in IBD patients

AEs - adverse events, CI - confidence interval, EI - endoscopic improvement, ER - endoscopic remission, HR - histologic remission, I² - I-squared statistic, IBD - inflammatory bowel disease, RR - relative risk, SFR - steroid-free remission, TF - treatment failure, TNF - tumour necrosis factor

	in IBD sul	btypes		
Outcomes	Number of studies	RR (95 % CI)	р	I ²
Clinical remission				
	13	1.38 (1.24, 1.55)	<	38.0
UC			0.001	
CD	5	1.16 (1.02, 1.31)	0.029	14.1
Clinical response				
UC	10	1.19 (1.05, 1.34)	0.005	79.3
CD	4	0.92 (0.70, 1.19)	0.510	90.2
ER				
UC	6	1.24 (0.87, 1.77)	0.239	61.2
CD	3	0.88 (0.67, 1.16)	0.353	0.0
SFR				
UC	13	1.21 (1.02, 1.43)	0.033	64.9
CD	5	1.08 (0.78, 1.49)	0.645	84.6
EI				
UC	3	1.28 (0.82, 2.00)	0.279	79.4
CD	1	0.98 (0.77, 1.25)	0.865	0.0
IBD-related surgery				
UC	3	1.56 (1.07, 2.26)	0.020	59.0
CD	3	1.21 (0.89, 1.64)	0.234	56.7
IBD-related				
hospitalization				
UC	4	0.98 (0.77, 1.26)	0.883	73.6
CD	3	1.00 (0.80, 1.26)	0.980	0.0
AEs				
UC	10	0.70 (0.54, 0.92)	0.010	49.1
CD	2	1.32 (0.99, 1.76)	0.059	0.0
Severe AEs				
UC	4	0.56 (0.34, 0.93)	0.025	76.9
CD	3	0.73 (0.36, 1.51)	0.396	69.4
Severe infections				
UC	3	0.64 (0.37, 1.11)	0.110	37.5
CD	2	0.83 (0.38, 1.80)	0.639	24.6

Table III. Pooled results for efficacy and safety of vedolizumab vs. TNF- α inhibitors in IBD subtypes

AEs – adverse events, EI – endoscopic improvement, CI – confidence interval, ER $endoscopic\ remission,\ HR-histologic\ remission,\ I^2-I-squared\ statistic,\ IBD-inflammatory$ $bowel\ disease,\ RR-relative\ risk,\ SFR-steroid-free\ remission,\ TF-treatment\ failure,\ TNF-treatment\ failure,\ fau$ tumor necrosis factor, UC – ulcerative colitis

Outcomes by B	Begg's test			
Outcomes	Z	Р		
Clinical remission	1.01	0.327		
Clinical response	0.82	0.429		
SFR	1.28	0.219		
AEs	-1.72	0.111		

Table IV. Publication bias of outcomes by Begg's test

 $AEs-adverse \ events, \ SFR-steroid\ free \\ remission$

uncorrected proofs

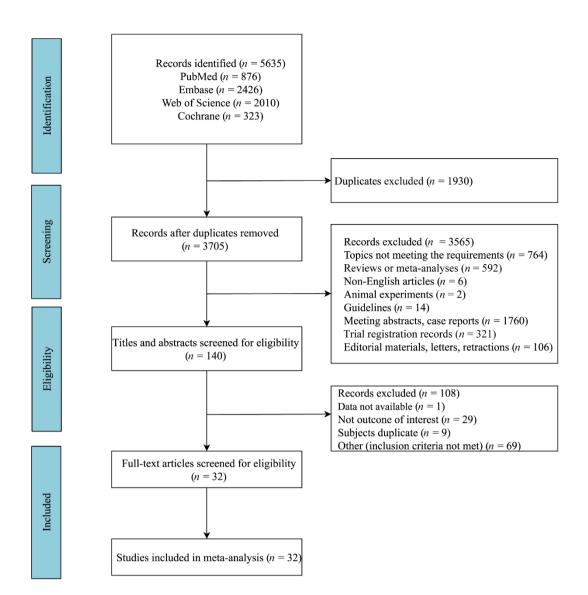


Fig. 1. The flowchart of the study search.

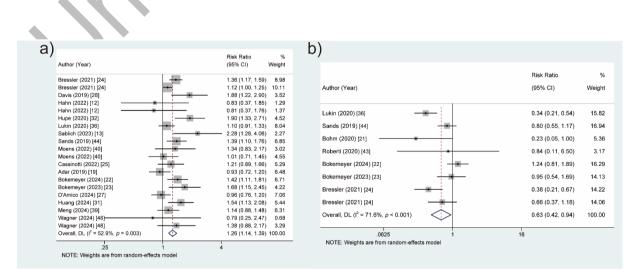


Fig. 2. Forest plots of vedolizumab *vs*. TNF- α inhibitors for the efficacy and safety of treating patients with IBD: a) clinical remission, b) severe AEs.

AEs - adverse events, IBD - inflammatory bowel disease, TNF - tumour necrosis factor