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ABSTRACT

This study aimed to examine the motility, biofilm production, endotoxin release, and antibiotic
resistance of 81 Ralstonia pickettii isolates collected from different pharmaceutical water systems in
Croatia. Swimming and twitching motility was detected in all isolates, while swarming was not
observed. Biofilm production was detected in approximately 40 % of the isolates under the tested
conditions. Notably, extracellular polymeric substance (EPS) production was a common trait among all
isolates. Endotoxin production was detected with Limulus Amoebocyte Lysate test. Antibiotic
susceptibility testing revealed consistent resistance to colistin, as well as significant resistance rates to

B-lactam antibiotics, ertapenem, amoxicillin/clavulanic acid, ticarcillin and ampicillin. High
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susceptibility to first-generation cephalosporins, cephalexin, cefoxitin and chloramphenicol was
observed. All isolates were susceptible to tigecycline and tetracycline. The isolates were grouped into
three genetically closely related clusters, yet notable phenotypic diversity in biofilm production and
antibiotic susceptibility persisted within these groups. The study highlights R. pickettii's adaptability in
pharmaceutical water systems, marked by its motility, biofilm-forming capabilities, and multidrug
resistance. These results emphasize the importance of rigorous monitoring of water systems to reduce

transmission risks and prevent the emergence of resistant strains in clinical environments.

Keywords: Ralstonia pickettii, motility, biofilm, endotoxin, resistance

Accepted September 12, 2025
Published online September 12, 2025

INTRODUCTION

Ralstonia pickettii belongs to the genus Ralstonia and considering the results of the average nucleotide
identity it is considered that there are at least two subspecies, possibly two species of R. pickettii (1). It
is often isolated from pharmaceutical industrial water production systems where it forms biofilm. R.
pickettii is an opportunistic pathogen, it colonizes the hospital environment and patients, and it is
associated with a wide range of hospital infections, often associated with the use of contaminated
solutions that were declared sterile (2-11). Treatment of infection caused by R. pickettii can be a
problem due to incomplete knowledge of the antibiotic resistance profile of this environmental

bacterium (12).

Due to the frequent isolation of R. pickettii in samples obtained from ultrapure and purified
pharmaceutical water systems during routine control, and a lack of relevant data for this geographic
region, we collected and studied isolates of R. pickettii from different pharmaceutical industrial plants

from two different areas of Croatia.

In our previous study, it was found that the most common aminoglycoside antibiotic resistance profile

(85.2 %) was tobramycin-gentamicin-amikacin-netilmicin (T-G-A-N). The genes blaoxa-22 and blaoxa-
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60 Were detected in 37.0 % and 80.3 % of isolates, respectively. Using pulsed-field gel electrophoresis,

it was observed that the tested isolates were highly related (13).

In this study we analysed the motility of isolates and the production of extracellular polymeric substance
(EPS) as prerequisites for biofilm production, we examined the ability of isolates to form biofilm, and
we expanded the antibiotic susceptibility testing to ten antibiotics that were not tested previously to
obtain complete resistance profile. Finally, we tested the endotoxin in selected isolates with different

antibiotic resistance profiles and different production of biofilm.

EXPERIMENTAL
Bacterial isolates

Eighty-one (81) isolates of R. pickettii were collected from five different plants for laboratory purified

water (LPW) and pharmaceutical ultrapure water (UPW) from two different areas of Croatia (Table 1).

Table | here

According to the European pharmacopoeia, R2A agar (Biomerieux, France), intended for the cultivation
of microorganisms from areas with low nutrients, was used for cultivation from UPW samples, and
tryptic soy agar (TSA, Biomerieux, France) was used for cultivation of microorganisms from LPW.
Columbia blood agar (COL, Biomerieux, France) was used for subcultivation. A commercial
biochemical test for non-fermentative bacteria was used for identification, and all isolates identified as
R. pickettii were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass

spectrometry and by polymerase chain reaction, as described in our previous study (13).
Testing the antibiotics susceptibility of R. pickettii isolates

The antibiotic susceptibility of all R. pickettii isolates was tested by Kirby-Bauer disc diffusion method
(DD) on Mueller Hinton agar (MHA, bioMerieux, France) against 10 antibiotics with antimicrobial
discs (MASTDISCS®AST, MastGroup, UK) of ampicillin (AMP 20 ug), amoxicillin/clavulanic acid

(AMC 20/10 pg), cephalexin (CN 30 ug), cefoxitin (FOX 30 pg), ertapenem (ETP 10 ug), ticarcillin
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(TIC 75 pg), tetracycline (TE 30 ug), tigecycline (TGC 15 pg), colistin (CL 50 pg) and chloramphenicol
(C 30 pg). The results were read and interpreted according to CLSI guidelines for Pseudomonas spp,
Acinetobacter spp, Burkholderia spp, Enterobateriaceae (15) and European Committee on

Antibacterial Susceptibility Testing guidelines for colistin for Acinetobacter spp.

Motility testing

Different motility types of R. pickettii were tested by seeding on nutrient media with different agar
concentration at 37 °C (16, 17). Swimming motility was tested in sulphide indole motility nutrient
medium (SIM, Becton, Dickinson and Company, USA) in a test tube, and in Petri plate with Luria
Bertani nutrient medium (LB, Becton, Dickinson and Company, USA) with 0.3 % agar. Motility in a
test tube was manifested by turbidity, and the distance of turbidity from the puncture line in mm was
measured after cultivation for 24 and after 72 hours. The diameter of bacterial migration from the
seeding site on LB agar was measured after 2, 24, 72 and 96 hours of incubation. Swarming motility
was tested on 0.5-0.7 % LB agar and twitching on 1 % LB agar. For the twitching assay, the isolate was
inoculated by pricking the agar surface to the bottom of a Petri dish. The diffuse zone of bacterial growth
between the agar surface and the bottom of the Petri dish measured after 24 hours was a measure of

twitching motility. All tests were performed at least in two independent experiments.

Production of extracellular polymeric substances

EPS production in R. pickettii was tested by cultivation in liquid nutrient broth on perlite balls and on
aluminium foil, in liquid tryptic soy broth (TSB, BioMerieux, France) without additions of other
supports and on a solid surface of R2A agar (Oxoid, UK). After cultivation for 48 hours at 37 °C, direct
smears were prepared from bacterial deposits on perlite and from aluminium foil and stained, first with
alcian blue, and then fuchsin. Alcian blue stained the EPS, and fuchsin visualized the bacterial cell by
staining it red (17). Microscopic slides from TSB and from R2A were prepared from the grown cultures

and stained according to Gram. All tests were performed at least in two independent experiments.

Biofilm production
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Biofilm production was examined by the microtiter plate assay, and the quantification of produced
biofilm was performed by crystal violet staining and optical density (OD) of the discoloured biofilm
was measured spectrophotometrically at a wavelength of 620 nm (18). All isolates were tested for
biofilm production in two independent experiments with four technical replicates, after incubation for
4 h,6h,8hand 24 h at 37 °C. Seven strains which were less mobile in the test tube motility and with
different swimming type motility were incubated for an additional 24 hours (48 hours in total). The
isolates with OD values higher than the OD of the negative control were considered biofilm producers.
The optical density cut-off value (ODc) was used to categorize biofilm producers and defined by the
formula: ODc = averageODnregative control + (3% SDnegative contror). The OD value for each isolate was
calculated according to the formula: ODisolaste = MeanODisoie — ODC. According to the obtained OD
results, the isolates were categorized as: OD < ODc, non-biofilm producer (NBP); ODc¢ <OD <2x0ODc,
weak biofilm producer (WBP); 2xODc¢ < OD < 4x0Dc, moderate biofilm producer (MBP), and OD >

4x0Dc, strong biofilm producer (SBP) (19).
Endotoxin detection

Endotoxin was examined with Limulus Amoebocyte Lysate test (LAL) (20, 21). We tested 6 isolates
from different areas of Croatia with different phenotypes of resistance to aminoglycosides and different
biofilm production. Samples for endotoxin assay were prepared by autoclaving a bacterial suspension
of 105 CFU mL* at 136°C to destroy the bacterial cells and release the present endotoxin. Control
standard endotoxin (CSE) was used in concentration 24, 14, 0.5, 0.251. Lambda is the endotoxin
concentration required to form a gel in the reaction with the lysate and indicates the sensitivity of the
lysate. In our test 2 was 0.0625 EU mL™. After the end of incubation each test tube was carefully turned
180° and the presence of endotoxins was determined based on the formation of a solid gel. At the same
time, the release of endotoxin in the standard strain E. coli ATCC 25922 was used as a positive control.

The test was performed in two independent experiments.

Genetic relatedness of R. pickettii isolates
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The relatedness of all identified R. pickettii isolates from different sources/locations in Croatia was
investigated by pulsed field gel electrophoresis (PFGE) and a computerized dendrogram of DNA profile

similarity was created in our previous study (13).

Statistical analysis

Statistical analysis of biofilm production related to different aminoglycoside resistance profiles was
determined by the Fisher exact test as described in Mayhua 2019. t-test was used to analyse the
significance of the swimming motility during different times and biofilm production (p value < 0.05

considered statistically significant).

RESULTS AND DISCUSION

We tested R. pickettii isolates that were collected during regular quality monitoring of ultrapure and
purified water systems located in different areas of Croatia. This study was initiated due to the
assumption that the almost constant occurrence of R. pickettii in our water samples from controlled
industrial and laboratory facilities would result in the existence of biofilms in these systems. After
cultivation for 18-24 hours at 37 °C, colonies of R. pickettii grew on membrane filters on TSA, R2A as
shiny, moist, slightly convex, light brown and/or brown to dirty pink, with a diameter of 0.5-2 mm, and
on blood agar they grew as shiny grey colonies. Small, delicate Gram-negative rods, 0.8-2 um x 0.3
um in size, were seen in the Gram-stained microscopic preparation (Fig. 1).

Figure 1 here

Motility property and biofilm production

In the previous studies the biofilm and the properties required for biofilm production, such as twitching
motility and EPS production were studied on a very limited number of isolates (22, 23). Our analysis
was performed on a large collection of 81 isolates, and we extended it to three different motility types
— swimming (in a test tube and on the agar surface), twitching, and swarming. All isolates showed
swimming motility in test tube and different forms of turbidity were observed, from uniform to irregular

to fan shaped (Fig. 2a). On the first day of cultivation, 67 % isolates grew 3 mm and more from the
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puncture line (Table I1). Most isolates had a significantly increased initial turbidity after the third day
of incubation because the cells, due their motility, inhabited areas further from the puncture line. All
isolates also showed swimming motility on Luria Bertani nutrient medium (Fig. 2b), 87 % already after
two hours of cultivation. Majority of isolates reached a greater distance from the seeding place with
longer incubation. All isolates showed twitching motility necessary for biofilm production (Fig. 2c),

while none of them showed the swarming motility.

Figure 2 here

Production of extracellular polymeric substances (EPS)

R. pickettii produced the EPS on perlite in TSB broth and in TSB, but not on aluminium foil or on a
solid nutrient medium. Microscopic preparations made from the deposits formed on perlite beads clearly
showed red-stained bacterial cells and blue-stained areas representing the EPS formed by the cells after
48 hours of cultivation (Fig. 2d). There were no visible traces of EPS in the aluminium foil preparations.
In the Gram preparation from TSB, red-stained bacterial cells and red-stained mucous material around
the cells were clearly visible (Fig. 2e), while in the preparation from a solid substrate, only red stained

bacterial cells were visible (Fig. 2f).
Biofilm production

Although all our isolates produced EPS and showed the motility types required for biofilm production,
we did not demonstrate the biofilm production in all isolates under our testing conditions. Of the 81
tested isolates, 6.2 % were MBP, 30.9 % were WBP and 63 % of isolates did not produce biofilm (NBP)

(Table I, Fig. 3).
Table 2 here

Figure 3 here

We observed that some isolates that did not form biofilm still left a visible stain on the well walls (Fig.

20), so we extended the incubation time to 48 hours for the seven selected isolates (HL27, HL30, HL32,
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K100, GL103, Pp378, Pm379) to examine whether the status of the biofilm producers would change
over time. No change occurred in two isolates (HL27 and HL32), the isolates kept their original status
as non-biofilm producers, while two isolates (HL30 and K100) changed from non-producers to weak
biofilm producers and three isolates (GL102, Pp378 and Pm379) changed from weak producers to
moderate biofilm producers. The values of optical density throughout the observed time for isolates that
produce biofilm indicate that there is an early phase of growth up to 6 to 8 hours, which then falls and

then grows again up to 48 hours (Fig. 4).

Figure 4 here

If we had changed the conditions of the assay itself, for example by growing in a system with refreshing
bacterial nutrient medium or perhaps by extending the cultivation time, we might have achieved better
biofilm production in the isolates that left a visible stain on the well wall. There was no indication that
variations in the swimming motility and the motility in the test tube influenced the production of biofilm
No statistically significant difference in test tube motility was obtained between non biofilm producers
and biofilm producers, regardless of the length of incubation (Pfirst day = 0.062, Prhird day = 0.052) or in
swimming on the agar surface after 2 hours (p = 0.178). Significantly larger swimming radii were

observed in non-biofilm producers in the first 24 hours than after 96 hours of incubation (p = 0.013).

Endotoxin detection

Investigated isolates with different aminoglycoside resistance and biofilm production profiles produced

endotoxin in concentrations close to the concentration of endotoxin in the control E. coli strain (Table
I1).

Table 3 here

The structure of its LPS decreases cytokine levels (24), is consistent with the low-grade inflammation
in obese patients (25), and is associated with worsened glucose intolerance in obesity (26), suggesting

that R. pickettii could turn from a common environmental bacterium and opportunistic pathogen into a
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problematic hospital strain. This is supported by severe R. pickettii infections that were described in
several individual cases, some of which were very serious (6, 7, 27). Thus far, R. pickettii-related

infections have not been documented in Croatia.
Antibiotic resistance profiles

High rates of resistance for aztreonam, four aminoglycosides (netilmicin, amikacin, tobramycin,
gentamicin) and quite high resistance rates for ticarcillin/clavulanic acid and B-lactam antibiotics for the
same isolates were detected in our previous study (13). Here we detected 100 % resistance rate to
colistin, as well as significant resistance rates to -lactam antibiotics: 91.3 % of the isolates were
resistant to ertapenem, 71.6 % were resistant to amoxicillin/clavulanic acid, 67.9 % to ticarcillin and
58.0 % to ampicillin. In addition to the already described high sensitivity of R. pickettii isolates to the
cephalosporin antibiotics ceftriaxone, cefotaxime, cefepime and ceftazidime (13), in this study we found
a very high sensitivity to the first generation cephalosporins cephalexin (96.3 %) and cefoxitin (97.5

%). All isolates were susceptible to tigecycline, and tetracycline (Table V).

Table IV here

The antibiotic resistance profiles of tested isolates from this study, as well as the results obtained in our
previous study (13) revealed discrete differences in comparison to the observations published by other

authors. We summarised our results and data found in the literature in Table V.

Table V here

To make a better comparison of our results on isolates from purified and ultrapure water systems, we
separated them from results published by other authors on clinical and environmental isolates from
different water sources. It is disturbing that R. pickettii is almost fully resistant to colistin, both in clinical
settings and in different water sources, but fortunately it remains highly susceptible to piperacillin,
piperacillin/tazobactam, imipenem (in water systems), cefoxitin, ceftriaxone, cefotaxime, tigecycline,
tetracycline, trimethoprim/sulfamethoxazole and ciprofloxacin. Clinical strains show increased

resistance to imipenem and ceftazidime, indicating the spreading of resistance genes by horizontal
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transfer in hospital environments. It is interesting, however, that isolates from Croatian water systems
are highly resistant to all tested aminoglycosides (T-G-A-N), whereas clinical strains and especially
other previously analysed water sources isolates show lower resistance rate to amikacin. Similar results
are noted also for meropenem and aztreonam, indicating local spread of carbapenemase genes, as

confirmed by our previous study (13).

Genetic relatedness of R. pickettii isolates

In our previous study we determined the relatedness of R. pickettii isolates by PFGE (13) and here we
analysed the obtained clusters with regard to the biofilm production and aminoglycoside resistance
phenotype. We showed previously that three main clusters with a different number of subclusters were
formed by hierarchical grouping; most isolates (57.0 %) were in cluster A, 8.9 % of isolates in cluster

B and 35.4 % isolates in cluster C (Table V1I).

Table VI here

We attempted to correlate the ability to produce biofilm with geographic distribution of isolates, but our
biofilm producers were equally distributed in both Croatian areas and in all five sources. All three
clusters contained both biofilm producers, as well as non-biofilm producers. In cluster A approximately
50 % of isolates showed aminoglycoside resistance phenotype T-G-A-N (33/67). There were two
isolates susceptible to tobramycin, amikacin, and gentamicin and resistant to netilmicin and 9/79 isolates
were susceptible to all four aminoglycoside antibiotics, all were from the area Il (K isolates). All isolates

in clusters B and C had the same phenotype, T-G-A-N.

CONCLUSIONS

R. pickettii is an opportunistic bacterium that contaminates pharmaceutical production plants and the
hospital environment and may cause infections, sometimes with a fatal outcome. Our study highlights
R. pickettii's adaptability in Croatian pharmaceutical water systems, marked by its motility, biofilm-
forming capabilities, production of endotoxin and multidrug resistance. R. pickettii can be a source of

resistance genes for other microorganisms it meets, it can also develop new resistance mechanisms due

10
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to innate potential due to selection pressure or by exchanging genetic material with other bacteria. R.
pickettii should therefore be regarded as a potential causative agent of nosocomial infections,
necessitating careful consideration to ensure the administration of appropriate therapeutic interventions,
prevent the emergence of antibiotic-resistant strains, and minimize its survival in clean and ultra-clean

water systems.
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Fig. 1. R. pickettii light brown/dirty pink colonies on membrane filter: a) pure culture; b) mixed
culture on Tryptic soy agar; ¢) pure culture of grey, moist colonies on Columbia blood agar. Gram-
negative rods in a microscopic preparation with magnification: d) 1000x; e) 2000x; f) 4000x.
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Fig. 2. Motility of R. pickettii in test tube: a) eight representative samples showing different forms of
turbidity; b) swimming motility of representative samples of R. pickettii isolates on agar surfaces; c)
twitching motility. Microscopic appearance of R. pickettii and EPS: d) cultured on perlite and stained
with alcian blue, EPS-blue, bacterial cells-red; e) cultured in TSB and stained by Gram, EPS-red, cells-
red; f) cultured on the surface of R,A agar, without EPS, only cells red; g) negative control and test
results of biofilm production in HL27, Pp378 and Pm379 isolates.
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385  Fig. 3. Biofilm production of R. pickettii isolates after 24 h of incubation. Below the red line are non-
386  biofilm producers (OD < 0.089), between the red and green lines are weak biofilm producers (OD
387  0.089-0.176), and above the green are moderate biofilm producers (OD > 0.177). NC — negative
388  control (medium without bacteria).
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Fig. 4. Biofilm development of representative isolates in 48 hours. NC — negative control; error bars —

standard deviation.

Table I. Ralstonia pickettii isolates from two Croatia areas (I and 1) and five pharmaceutical water

plants/sources (Pm, Pp, HL, G and K)

Industrial
plant
designation

Area of

f Isolate
isolates

Source

No of
isolates

R. pickettii Pm8, Pm20, Pm68, Pm79,
Pm80, Pm81, Pm88, Pm89, Pm90, Pm91,
Pm92, Pm95, Pm96, Pm104, Pm373,
Pm374, Pm375, Pm376, Pm379, Pm381,
Pm382, Pm383, Pm384, Pm385, Pm386,
Pm387, Pm388, Pm389, Pm390

Pm

LPW

29

R. pickettii Pp78, Pp83, Pp94, Pp377,
Pp378, Pp391

LPW

R. pickettii HL15, HL16, HL17, HL18,
HL19, HL21, HL22, HL23, HL24, HL25,
HL26, HL27, HL28, HL29, HL30, HL31,
HL32, HL33, HL34, HL35, HL36, HL93,
HL392, HL393, HL394, HL395, HL398,
HL399, HL100,

HL

UPW

29
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R. pickettii GL13, GL14, GL54, GL55,

GL LPW 7
GL56, GL77, GL103
K98, K99, K100, K101, K102 10
Total 81

399  LPW - laboratory purified water, UPW — ultrapure water.
400

401
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402  Table Il. Motility properties and biofilm production of R. pickettii isolates compared to their
403  aminoglycoside resistance phenotype

hfg;:':%;” Swimming motility on 0.3 % Biofilm Aminoglycoside

fter TSA agar after Twitching production after resistance

Isolate 24 ha e72 h 2h  24h 72h 96h  motility Phenotype
mm  mm mm mm mm mm 2ah - 48h AN

Pm8 3 5 1 20 25 30 + NBP R-R-R-R
GL13 15 15 1 22 30 30 + NBP R-R-R-R
GL14 3 11 1 2 5 10 + WBP R-R-R-R
HL15 6 12 3 6 15 29 + NBP R-R-R-R
HL16 4 11 3 9 15 30 + NBP R-R-R-R
HL17 1 1 1 7 17 28 + NBP R-R-R-R
HL18 4 10 0 30 30 30 + NBP R-R-R-R
HL19 3 4 0 30 30 30 + NBP R-R-R-R
Pm20 5 11 2 5 18 45 + NBP R-R-R-R
HL21 5 11 15 5 10 24 + NBP R-R-R-R
HL22 2 2 15 5 17 29 + NBP R-R-R-R
HL23 5 13 1 30 30 30 + NBP R-R-R-R
HL24 6 12 2.5 10 16 20 + NBP R-R-R-R
HL25 4 6 0 30 30 30 + NBP R-R-R-R
HL26 4 6 1 5 12 25 + NBP R-R-R-R
HL27 2 2 1 10 17 29 + NBP NBP R-R-R-R
HL28 15 15 15 3 6 12 + WBP S-S-R-R
HL29 5 7 15 4 9 15 + NBP R-R-R-R
HL30 15 15 1 9 15 32 + NBP  WBP S-S-R-R
HL31 6 10 2 30 30 30 + NBP R-R-R-R
HL32 3 4 1 7 12 18 + NBP NBP R-R-R-R
HL33 5 8 1 4 9 15 + WBP R-R-R-R
HL34 5 12 1 5 13 25 + NBP R-R-R-R
HL35 3 5 0 3 7 14 + NBP R-R-R-R
HL36 2 3 1 4 7 11 + NBP R-R-R-R
GL54 3 11 1 5 8 18 + MBP R-R-R-R
GL55 15 2 2 4 9 15 + NBP R-R-R-R
GL56 3 10 2 6 10 23 + NBP R-R-R-R
Pm68 2 3 3 11 12 14 + NBP R-R-R-R
GL77 3 7 0 12 16 20 + NBP R-R-R-R
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NBP
WBP
NBP
NBP
NBP
NBP
WBP
WBP
NBP
NBP
NBP
NBP
WBP
WBP
NBP
NBP
NBP
NBP
WBP
WBP
WBP
NBP
WBP
WBP
WBP
NBP
WBP
WBP
NBP
NBP
WBP
WBP
WBP
NBP
WBP

WBP

MBP

MBP
MBP

R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
S-S-S-R
S-R-R-R
R-R-R-R
S-S-R-R
S-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
S-8-S-S
S-S-R-S
S-8-S-S
S-8-S-S
S-S-S-S
R-S-S-S
R-R-R-R
R-R-R-R
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R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
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405
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407

Pm383
Pm384
Pm385
Pm386
Pm387
Pm388
Pm389
Pm390
Pp391

HL392
HL393
HL394
HL395
HL398
HL399
HL100

w o0 M~ W

15
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3
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15

2.5

2.5

N O N N N W

30
6
30
15

8
7
32
30
7
30
8
8
10
14
15
9
30
10
30
16

10
11
45
30
10
30
10
12
15
20
25
10
30
10
30
20

+

+

WBP
MBP
MBP
MBP
WBP
MBP
WBP
WBP
WBP
NBP
NBP
NBP
NBP
NBP
NBP
NBP

R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R
R-R-R-R

NBP — non-biofilm producer (OD < ODc), WBP — weak biofilm producer (ODc <OD < 2x ODc), MBP
— moderate biofilm producer (2x ODc< OD < 4x ODc), T-G-A-N — tobramycin-gentamicin-amikacin-

netilmicin, S — susceptible, R — resistant.
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408  Table Ill. Endotoxin concentrations in control E. coli strain and R. pickettii isolates obtained by the
409  LAL method

dition  ~Eccoli Pm20 HL27 HL30 K& K9 GL103 el
origina " - " " m T " 0.0625
1:2 + + + + + + + 0.125
1:4 + + + + + + + 0.25
1:8 + + _ + + + — 0.5
1:16 - + - + - ¥ - 1
1:32 - + - + - - - 2
1:64 - - - - - - - 4

410  positive reaction (+), negative rection (-).

411

22



412
413

414
415
416

Table 1V. Resistance profile of R. pickettii isolates obtained by the disc diffusion method

Zone diameter

Ralstonia pickettii (n = 81)

Antibiotic? Dise R I S

R I S (M)

No (%) No (%) No (%)

Ampicillin <13 1416 =>17 10  47(58.0%) 20(24.7%) 14 (17.3%)
Amoxicillin / <13 14-17 >18 20/10 58(71.6%) 17(20.0%) 6 (7.4 %)
clavulanic acid
Ticarcillin <15 1623 >24 75 55(67.9%) 24(29.6%) 2(2.5%)
Ertapenem <15 16-18 =>19 10 74 (91.3%) 5(6.2 %) 2 (2.5 %)
Cefalexin <19 2022 >23 30 2 (2.5%) 1(1.2%) 78(96.3 %)
Cefoxitin <14 1517 >18 30 2 (2.5 %) 0 79 (97.5 %)
Tigecycline <11 12-14 >15 30 0 0 81 (100 %)
Tetracycline <11 12-14 =>15 30 0 0 81 (100 %)
Chloramphenicol <12  13-17 >18 30 7(86%) 33(40.7%) 41 (50.6 %)
Colistin <10 - >11 50 81 (100 %) 0 0

2 Inhibition zones for P. aeruginosa, Acinetobacter spp and enterobacteria were used (CLSI, 2018,
EUCAST 2019). R — resistant, | — intermediate, S — susceptible.
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424

Table V. Antimicrobial resistances identified in 81 R. pickettii isolates from water systems in Croatia
(this work and (13) and in different R. pickettii isolates (clinical settings and different water sources)

obtained from a literature review

Antibiotic R. pickettii — R. pickettii — R. pickettii — water
water sources in clinical strains sources (previous
Croatia (previous studies)®  studies)®
Ampicillin 47/181 (58.0%)  2/4(50.0 %) 22123 (95.7 %)
Amoxicillin/clavulanic acid 58/81 (71.6 %) 1/1 (100 %) 0/1 (0 %)
Ticarcillin 55/81 (67.9%)  hottested 18/37 (48.6 %)
Ticarcillin/clavulanic acid 50/81 /61.7 %) not tested not tested
Piperacillin 2/81 (2.5 %) 1/1 (100 %) 0/20 (0 %)
Piperacillin/tazobactam 2/81 (2.5 %) 2/17 (11.8 %) 0/15 (0 %)
Ertapenem 74/81 (91.4%)  1/1(100 %) not tested
Imipenem 0/81 (0 %) 8/21 (38.1 %) 0/17 (0 %)
Meropenem 77/81 (95.0 %)°  13/19 (68.4 %) 9/51 (17.6 %)
Aztreonam 78/81 (96.3 %) 16/18 (88.9 %) not tested
Cefalexin 2/81 (2.5 %) 2/4 (50.0 %) 1/1 (100 %)
Cefoxitin 2/81 (2.5 %) 0/1 (0 %) 1/21 (4.8 %)
Ceftriaxone 0/81 (0 %) 0/2 (0 %) 0/17 (0 %)
Ceftazidime 11/81 (13.6 %) 11/25 (44.0 %) 19/71 (26.8 %)
Cefotaxime 0/81 (0 %) 1/2 (50.0 %) 0/20 (0 %)
Cefepime 0/81 (0 %) 2/11 (18.2 %) not tested
Gentamicin 70/81 (86.4 %) 13/15 (86.7 %) 56/61 (91.8 %)
Amikacin 71/81 (87.7 %) 11/18 (61.1 %) 4/15 (26.7 %)
Tobramycin 72/81 (88.9%)  11/14(78.6 %) 8/9 (88.9 %)
Netilmicin 72/181 (88.9%)  0/1(0%) not tested
Tigecycline 0/81 (0 %) 0/2 (0 %) 0/14 (0 %)
Tetracycline 0/81 (0 %) 0/5 (0 %) 0/40 (0 %)
Trimethoprim/sulfamethoxazole 0/81 (0 %) 1/22 (4.5 %) 0/52 (0 %)
Ciprofloxacin 2/81 (2.5 %) 0/15 (0 %) 1/71 (1.4 %)
Chloramphenicol 7/81 (8.6 %) 1/1 (100 %) 2/3 (66.7 %)
Colistin 81/81 (100 %) 14/15 (93.3 %) 65/65 (100 %)

3 References for R. pickettii clinical strains (1, 3, 4, 6, 8, 12, 27-31). ® References for R. pickettii from
various water sources (11, 28, 32, 33). ¢ Distinct differences are highlighted in grey.
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425  Table VI. Three clusters and their subclusters formed by R. pickettii isolates from specific areas,
426  according to biofilm production and aminoglycoside resistance phenotype

427
Isolates WBP MBP  TGAN TGAN N T
Cluster  Subcluster -l(—Otfl GL(h Pm( (Ep_ HL (n (r:<— N:stgn (n= (= R(M= S(= RM r?:
79) =7  =27) 6) =29) 10) 24) 7) 67) 9) =2) 1)
1 11 0 10 1 0 0 1 7 3 11 0 0 0
2. 13 2 5 3 2 1 6 5 2 10 1 2 0
A 3. 7 0 0 0 0 7 3 4 0 0 7 0 0
4. 5 2 2 0 1 0 4 1 0 5 0 0 0
5. 9 3 4 0 0 2 3 4 2 7 1 0 1
Total 45 7 21 4 3 10 17 21 7 33 9 2 1
1. 3 0 2 1 0 0 2 1 0 3 0 0 0
2. 1 0 0 1 0 0 1 0 0 1 0 0 0
B 3. 1 0 1 0 0 0 1 0 0 1 0 0 0
4. 1 0 1 0 0 0 0 1 0 1 0 0 0
Total 6 0 4 2 0 0 4 2 0 6 0 0 0
1 16 0 1 0 15 0 16 0 0 16 0 0 0
c 2 4 0 0 0 4 0 3 1 0 4 0 0 0
3. 8 0 1 0 7 0 8 0 0 8 0 0 0
Total 28 0 2 0 26 0 27 1 0 28 0 0 0

428  GL, Pm, Pp, HL —isolates from sampling sites in the area I; K — isolates from sampling sites in the
429  area ll. NBP — non biofilm producer, WBP — weak biofilm producer, MBP — moderate biofilm

430  producer.

431  TGAN —tobramycin, gentamicin, amikacin, netilmicin; N — netilmicin, T— tobramycin, R — resistant; S

432  —susceptible

433
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